

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR					
Module Title					
Mechatronics and Ma	chine Learning				
Reference	EN3552	Version	1		
Created	July 2023	SCQF Level	SCQF 9		
Approved	June 2021	SCQF Points	15		
Amended	June 2022	ECTS Points	7.5		

Aims of Module

To provide the student with the ability to demonstrate and apply mechatronics and its automation systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Evaluate various components such as electrical and mechanical sensors, actuators, and electrical motors for mechatronics and automation systems.
- Apply the design and analysis of mechatronic systems and its implementation in the form of automation systems in either laboratory or software based settings.
- Apply intelligent systems approach and the principle of computational intelligence to the solution of complex problem in computational intelligence based digital systems with awareness of the wider context of engineering.

Indicative Module Content

Introduction to mechatronics: examples of mechatronic systems, automation concepts, design approaches. Mechanical components of motion, hydraulic, pneumatic, and mechanical actuation systems. Modelling of mechatronic systems. Sensors & Actuators: theory and operation, types of sensors and transducers, sensor/actuator selection, technologies and applications, MEMS. Motors: Special motors; Stepper motors, types, principles, characteristics, and control; Switched reluctance motors, principles and applications; Brushless dc motors; Universal motor; Hysteresis motor; Synchronous reluctance motor; Servomotors and drives; Motor selection. PLCs: Configuration and programming. Computational Intelligence based digital systems: Artificial Intelligent, Machine Learning, Artificial Neural Networks, .

Module Delivery

Full-time students: This module is delivered by a combination of lectures and tutorials. It will be supported by practical examples and activities including computer based laboratory exercises. Part-time students: This module is delivered by a combination of lectures and tutorials online. It will be supported by online drop-in evening sessions.

Module Ref: EN3552 v1

Indicative Student Workload	Full Time	Part Time
Contact Hours	40	40
Non-Contact Hours	110	110
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type:

Coursework

Weighting:

100%

Outcomes Assessed:

1, 2, 3

Description:

Lab-based coursework exercises and a final report.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises 100% of module grade. To pass the module, a D grade is required.

component i comprises i	oo % of module grade. To pass the module, a D grade is required.	
Module Grade	Minimum Requirements to achieve Module Grade:	
Α	A	
В	В	
С	C	
D	D	
E	E	
F	F	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Prerequisites for Module

EN2510 or equivalent (Electronic and Electrical Engineering students). EN1562

or equivalent (Mechanical and Electrical Engineering students).

Corequisites for module

None.

Precluded Modules

None.

Module Ref: EN3552 v1

INDICATIVE BIBLIOGRAPHY

- 1 Isermann, Rolf. Mechatronic Systems. London: Springer London, Limited, 2007. Web.
- Regtien, Paul P. L, and Dertien, Edwin. Sensors for Mechatronics. 1st ed. San Diego: Elsevier, 2018. Elsevier Insights.
- Crowder, Richard M. Electric Drives and Electromechanical Systems : Applications and Control / [internet Resource]. Second ed. Kidlington, Oxford; Cambridge, MA: Butterworth-Heinemann, 2020.
- Hughes, Austin, and Drury, Bill. Electric motors and drives: fundamentals, types, and applications. 5th ed. Kidlington: Newnes, an imprint of Elsevier, 2019.
- 5 Bolton, W. Programmable Logic Controllers. 6th ed. Cambridge: Elsevier Science & Technology, 2015.
- 6 Awrejcewicz, J, et. al. Mechatronics: Ideas, Challenges, Solutions and Applications. Springer, 2015.
- 7 DORF, R.C. and BISHOP, R.C., 2017. Modern Control Systems. 13th ed. London: Pearson Education.
- 8 DU, K.L. and SWAMY, M.N.S., 2006. Neural Networks in a Softcomputing Framework. London: Springer.