

MODULE DESCRIPTOR

Module Title

Thermofluids 1			
Reference	EN1702	Version	7
Created	March 2023	SCQF Level	SCQF 7
Approved	May 2006	SCQF Points	15
Amended	August 2023	ECTS Points	7.5

Aims of Module

To enable the student to understand the basic concepts and theories of Thermodynamic Properties and Fluid Statics.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Identify key thermodynamic properties of gases and vapours.
- 2 Express knowledge and understanding of thermodynamic principles involved in simple systems and processes.
- 3 Identify key fluid properties and methods of measuring pressure.
- 4 Express knowledge, skills and understanding of solving problems involving hydrostatics.
- 5 Perform experiments to acquire an understanding of thermofluids principles.

Indicative Module Content

Units and dimensions. Thermodynamic systems, properties of gases and vapours, processes, energy, heat and work transfers, non-flow energy equation. Fluid properties, Hydrostatics, Pressure distribution in fluids at rest, Measurement of pressure, Forces on plane and curved surfaces, Buoyancy and Stability.

Module Delivery

The module is delivered by means of lectures, tutorials and guided self-study and is integrated with applications within the laboratory.

Indicative Student Workload	Full Time	Part Time
Contact Hours	50	50
Non-Contact Hours	100	100
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

Module Ref: EN1702 v7

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 100% Outcomes Assessed: 1, 2, 3, 4, 5

Description: Closed book examination

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

In order to pass the module students must achieve at least a Grade D.

Module Grade	Minimum Requirements to achieve Module Grade:	
Α	A	
В	В	
С	С	
D	D	
E	E	
F	F	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Prerequisites for Module None.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 CLIFFORD, MICHAEL, et al, 2009. An Introduction to Mechanical Engineering Part 1. Hodder Education.
- 2 Spurk, Joseph H et al; 2020. Fluid Mechanics. Cham: Springer
- 3 Bejan, Adrian, 2016. Advanced Engineering Thermodynamics. John Wiley&Sons, Incorporated