

MODULE DESCRIPTOR

Module Title

Analytical and Problem S	olving Skills				
Relefence	CIVI 1704	Version	4		
Created	February 2024	SCQF Level	SCQF 7		
Approved	May 2019	SCQF Points	30		
Amended	April 2024	ECTS Points	15		

Aims of Module

To provide students with the understanding of the mathematical principles and techniques behind data science, artificial intelligence and machine learning. To develop relevant transferable analytical and problem solving skills.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Implement appropriate mathematical techniques to solve simple computational problems.
- 2 Apply basic statistical techniques and derive measures of probability for a given set of data.
- 3 Describe the steps involved in modelling systems and processes.
- 4 Apply analytical and modelling skills to a range of problems relevant to computing.
- 5 Demonstrate skills in problem solving and effective communication in a variety of settings, relevant to future study, research and in the workplace.

Indicative Module Content

Problem solving techniques and the modelling process. Categories of data. Categories of problem type: analytic, computational, geometric, and probabilistic. Coordinate geometry and function graphing. Distance metrics. Matrices and vectors. Functions: multivariate and iterating functions, computational complexity, logarithms, exponentials, trigonometric. Set theory. Sequences and series. Probability theory. Random number generation. Boolean algebra. Application of modelling techniques to real world examples. Use of computational tools and packages (e.g., R).

Module Delivery

The module is delivered in Blended Learning mode using structured online learning materials/activities and directed study, facilitated by regular online tutor support. Workplace Mentor support and work-based learning activities will allow students to contextualise this learning to their own workplace. Face-to-face engagement occurs through annual induction sessions, employer work-site visits, and modular on-campus workshops.

	Module Ref:	CM1704	v4
Indicative Student Workload		Full Time	Part Time
Contact Hours		30	N/A
Non-Contact Hours		30	N/A
Placement/Work-Based Learning Experience [Notional] Hours		240	N/A
TOTAL		300	N/A
Actual Placement hours for professional, statutory or regulatory body		240	

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Coursework	Weighting:	100%	Outcomes Assessed:	1, 2, 3, 4, 5
Description:	This coursework will consist of a written report on a data modelling exercise and core concepts in mathematics and probability.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The calculation of the overall grade for this module is based on 100% weighing of C1. An overall minimum grade D is required to pass the module

Module Grade	Minimum Requirements to achieve Module Grade:
Α	The student needs to achieve an A in C1
В	The student needs to achieve a B in C1
С	The student needs to achieve a C in C1
D	The student needs to achieve a D in C1
E	The student needs to achieve an E in C1
F	The student needs to achieve an F in C1
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	None, in addition to course entry requirements.
Corequisites for module	None.
Precluded Modules	None.

INDICATIVE BIBLIOGRAPHY

- 1 ROSEN, K.H., 2018. Discrete mathematics and its applications. New York, NY: McGraw-Hill Education.
- 2 EPP, S.S., 2011. Discrete mathematics: introduction to mathematical reasoning. Boston, MA: Brooks/Cole Cengage Learning.

3 WICKHAM, H. and GROLEMUND, G., 2017. R for data science: import, tidy, transform, visualize and model data. Sebastopol, CA: O'Reilly.

4 JAMES, G. et al., 2013. An introduction to statistical learning: with applications in R.New York, NY: Springer.