

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR									
Module Title									
Asset Life Cycle Analysis									
Reference	SUM303	Version	4						
Created	August 2021	SCQF Level	SCQF 11						
Approved	December 2007	SCQF Points	15						
Amended	May 2022	ECTS Points	7.5						

Aims of Module

To develop a good understanding of the variables affecting the acquisition, running and replacement of an asset, and how the whole-life costs can be optimised.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Value an asset throughout its life cycle.
- Analyse how the application of whole-life costing techniques can reduce operating costs, improve performance and hence enhance value.
- Judge when an asset should be replaced or overhauled and how to prepare properly argued financial and technical papers for such course of action.
- 4 Critically appraise key contributions of the asset team in optimising whole-life costs of the asset.
- Assess the key problems likely to arise in a whole-life costing analysis and to effectively manage those problems.

Indicative Module Content

The importance of adopting a whole-life attitude in the design and management of physical assets. Historic and current developments of whole-life costing. The characteristics of long term financial decisions. Investment appraisal procedures. Whole-Life costing based decision-making rules and choice criteria. The principles of, and the procedures for, whole-life costing. Managing the difficulties facing the implementation of whole-life costing. Application of whole-life costing in design or purchasing physical assets. Application of whole-life costing to maintenance and replacement of physical assets. Effective risk analysis in whole-life costing studies. Extending the life-cycle framework to include non-financial attributes of assets. Whole-life costing tools: numerical methods, spreadsheets, computer software. Integrating various tools and techniques. Closing the feedback loop in the whole-life management of physical assets. Implementation models of whole-life costing. Industrial case studies, discussion groups and exercises with presentation.

Module Ref: SUM303 v4

Module Delivery

DISTANCE LEARNING: The module is delivered by online lectures, interactive group work, case study and tutorials and directed self-study.

Indicative Student Workload		Part Time
Contact Hours	N/A	70
Non-Contact Hours	N/A	80
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	N/A	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 50% Outcomes Assessed: 1, 3, 4

Description: Closed book examination.

Component 2

Type: Coursework Weighting: 50% Outcomes Assessed: 2, 5

Description: A report or a case study where asset life cycle analysis be used to optimise whole-life costs (of

an asset).

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The overall module grade is based on 50% weighting of Component 1 (Y axis) and 50% weighting of Component 2 (X axis). An overall minimum grade D is required to pass the module. Non-submission of either component will result in an NS grade.

component will result in an NS grade.									
		Examination:							
		Α	В	С	D	E	F	NS	
	Α	Α	Α	В	В	С	Е		
	В	Α	В	В	С	С	Е		
	С	В	В	С	С	D	Е		
Coursework:	D	В	С	С	D	D	Е		
	E	С	С	D	D	Е	Е		
	F	Е	Е	Е	Е	Е	F		
						of work by published ttendance for examination			

Module Requirements

Prerequisites for Module None in addition to course entry requirements or equivalent.

Corequisites for module None.

Precluded Modules ENM605 Asset Life Cycle Analysis.

Module Ref: SUM303 v4

INDICATIVE BIBLIOGRAPHY

Shil, N. C. & Parviz, M., 2010. Cycle Costing: Techniques and Applications: Choosing the Most Economic Project. VDM Verlag Dr. M?uller.

- 2 Kishk, M., 2004. Combining various facets of uncertainty in whole-life cost modelling. Construction Management and Economics, 22(4), pp. 429-435.
- Kishk M., Al-Hajj A., Pollock R., Aouad A., Bakis, N. and Sun, M., 2003. Whole-Life Costing in Construction A State of The Art Review. The RICS Research Paper Series, 4(18).
- Kishk M., Al-Hajj A. and Pollock R., 2002. An innovative integrated approach to whole life costing. Journal of Financial Management of Property and Construction, 7(1), pp. 31-40.