

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR					
Module Title					
Building Technology 3					
Reference	SU2002	Version	7		
Created	June 2017	SCQF Level	SCQF 8		
Approved	July 2002	SCQF Points	15		
Amended	September 2017	ECTS Points	7.5		

Aims of Module

To provide the student with the ability to understand and apply the key principles of construction techniques, construction detailing, built asset maintenance, refurbishment, renovation and 3D modelling and associated data management.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Explain and apply the principles of construction detailing and relate them to medium size buildings and associated legislation.
- 2 Assess the sources and causes of decay in buildings.
- 3 Apply the appropriate maintenance, refurbishment and rehabilitation process.
- 4 Explain the influence of building maintenance on building design, components and elements.
- Explain and apply the principles 3D modelling and data management to medium size buildings and associated legislations.

Indicative Module Content

Structure and construction principles in contemporary use will be explored and applied in details, along with a range of materials and new methods of construction. Understanding and application of 3D modelling and the principle of data management (BIM) are introduced. Building maintenance, refurbishment and rehabilitation requirements will be examined along with the requirements for any temporary works including a brief introduction to conservation issues. The module also introduces the reasons for deterioration and defects in buildings and will explore the relevant legislation relating to this topic. Remediation processes. Relevant legislation relating to the topics covered will be identified and reviewed.

Module Delivery

This is a lecture based module supplemented with tutorials, workshops and practical work which includes, simulations, fieldwork and/or site visits. A substantial part of the module is devoted to student centred learning and private study in the form of directed reading to building journals, core texts and resource material.

Module Ref: SU2002 v7

Indicative Student Workload		Part Time
Contact Hours	90	N/A
Non-Contact Hours	60	N/A
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 60% Outcomes Assessed: 1, 5

Part 1 is to demonstrate understanding and application of construction detailing through the

Description: generation of accurate detail drawing and material specification to a professional standard. Part 2

is to demonstrate understanding and practical skills of BIM and design data management.

Component 2

Type: Coursework Weighting: 40% Outcomes Assessed: 2, 3, 4

Description: Supervised test to assess understanding and application of module dealing with: refurbishments of

buildings, maintenance, decay and temporary works.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

In order to pass the module students must achieve 35% or greater in each component and 40% or greater overall.

Module Grade	Minimum Requirements to achieve Module Grade:	
Α	70% or better	
В	60% or better	
С	50% or better	
D	40% or better	
E	35% or better	
F	Less than 35%	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Prerequisites for Module None, in addition to Stage 2 entry requirements.

Corequisites for module None.

Precluded Modules None.

ADDITIONAL NOTES

Where appropriate mixed discipline team working will be encouraged.

Module Ref: SU2002 v7

INDICATIVE BIBLIOGRAPHY

- Addleson L, Building Failures: A Guide to Diagnosis, Remedy and Prevention, Butterworht Architectural, Oxford. (1992)
- 2 Seeley I H, Building Maintenance, MacMillan Educational Ltd, London. (1991)
- Foster J. S. & Greeno R., Structure and Fabric, Part 2, Mitchell's Building Series, Prentice Hall; 7 edition. (2007)
- 4 Building Information Modelling For Dummies by David Philp et al, 2015 John Wiley publishers.
- Getting to grips with BIM: a guide for small and medium-sized architecture, engineering and construction firms Authors: Harty James, Kouider Tahar, Paterson Graham. Routledge (2016, ISBN:9781138843974