

MODULE DESCRIPTOR

Module Title

Spectral Analysis and In	terpretation		
Reference	PL3606	Version	1
Created	October 2023	SCQF Level	SCQF 9
Approved	June 2002	SCQF Points	15
Amended	September 2023	ECTS Points	7.5

Aims of Module

To critically analyse IR, Raman, MS, and NMR spectra in structure elucidation.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Understand the techniques used in spectroscopic and spectrometric analysis of organic compounds.
- 2 Interpret IR, Raman, MS and NMR spectra in structure elucidation.
- ³ Discriminate between different drug/organic molecules using a combination of IR, Raman, MS and NMR spectra and perform data analysis from a range of advanced spectroscopic experiments.

Indicative Module Content

Topics include: Infrared, Raman, Nuclear Magnetic Resonance spectroscopy and Mass spectrometry in structure elucidation and the identification of drug/organic molecules IR and Raman Spectroscopy: The IR and Raman absorption process, sample preparation. The uses and interpretation of IR and Raman spectra. Mass Spectrometry: Theory of ionisation processes in the formation of molecular ions, mechanisms involved in base peak and other stable fragment ions, interpretation of mass spectra. NMR spectroscopy: nuclear spin states, magnetic moments, resonance absorption. 1H NMR: chemical shift, integration, spin-spin coupling, (n+1) rule, signal width and multiplicity, techniques to simplify complex spectra. 13C NMR: fully and partially decoupled spectra. An introduction to advanced techniques, DEPT, COSY,HSQC, HMBC. Combined spectral interpretation of drug molecules, paint samples and polymers in forensic and chemical applications.

Module Delivery

This is a lecture based module supplemented by tutorials, practical laboratory classes and directed reading.

	Module Ref:	PL3606	5 v1
Indicative Student Workload		Full Time	Part Time
Contact Hours		40	N/A
Non-Contact Hours		110	N/A
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	N/A
Actual Placement hours for professional, statutory or regulatory body	dy		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Examination	Weighting:	100%	Outcomes Assessed:	1, 2, 3
Description:	Open book written examination.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 (Examination) comprises 100%. A minimum of a Grade D is required to pass the module.

) comprised too /s. / (minimum of a crade B to required to pade the medale.
Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	C
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	Successful completion of Stage 2 Forensic and Analytical Science or equivalent.
Corequisites for module	None.
Precluded Modules	None.

INDICATIVE BIBLIOGRAPHY

- 1 PAVIA, D.L., et al. Introduction to Spectroscopy. Current Edition. 2015, 5th Edition. Harcourt
- 2 WATSON, D.G. Pharmaceutical Analysis a textbook for pharmacy students and pharmaceutical chemist.
- ² 2017, 4th Edition. Elsevier Edinburgh
 3 SIMPSON, J. H. Organic structure determination using 2-D NMR spectroscopy: a problem-based approach. 2012 2nd Edition. Amsterdam: Elsevier
- RAHMAN, A., CHOUDARY, M. I. AND WAHAB, A. Solving problems with NMR spectroscopy. 2016 2nd
 Edition. Amsterdam: Academic Press
- 5 LARKIN, P.J. Infrared and Raman spectroscopy: principles and spectral interpretation. 2018. 2nd Edition. Amsterdam: Elsevier