

MODULE DESCRIPTOR Module Title Kinesiology Reference HS1137 Version 1 Created April 2021 SCQF Level SCQF 7 Approved June 2021 SCQF Points 15 Amended **ECTS Points** 7.5

Aims of Module

This module aims to develop the students' ability to apply anatomical and biomechanical principles to the analysis of human movements.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Identify and describe the phases of a movement task.
- 2 Identify the joint movements and muscle actions of a movement task.
- 3 Explain the fundamental biomechanical principles underpinning a movement task.
- 4 Report data associated with muscle actions involved in a movement task.
- Demonstrate the necessary professionalism through attendance at learning opportunities required for safe practice.

Indicative Module Content

Technique analysis, observation, phases, framework approach, performance models, videoing principles, critical instances, semi quantitative video analysis. Biomechanical movement principles (Speed production, force production, movement co-ordination, sport specific). Segmental analysis. Electromyography (EMG) collection and analysis.

Module Delivery

Blended delivery comprising on campus and online learning and engagement. This will include Digital Learning Resources, Tutorials and Practical sessions.

Module Ref: HS1137 v1

Indicative Student Workload	Full Time	Part Time
Contact Hours	36	N/A
Non-Contact Hours	114	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Practical Exam Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: Presentation

Component 2

Type: Coursework Weighting: 0% Outcomes Assessed: 5

Description: Minimal module attendance requirement of 80%

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 grade based on grading proforma. Component 2 is a minimum modular attendance requirement of 80%

Module Grade	Minimum Requirements to achieve Module Grade:
Α	Component 1 A; Component 2 Pass
В	Component 1 B; Component 2 Pass
С	Component 1 C; Component 2 Pass
D	Component 1 D; Component 2 Pass
E	Component 1 E; Component 2 Pass
F	Component 1 F and/or fails Component 2
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module None, in addition to course entry requirements.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- BARTLETT, R., 2014. Introduction to sports biomechanics: Analysing human movement patterns. 3rd ed. London: Routledge.
- 2 KNUDSON, D.V., 2013. Qualitative diagnosis of human movement. 3rd ed. Champaign, IL: Human Kinetics.
- 3 McGINNIS, P.M., 2013. Biomechanics of Sport and Exercise. 3rd ed. Champaign, IL: Human Kinetics.
- PALASTANGA, N. & SOAMES, R., 2012. Anatomy & Human Movement Structure and Function. 7th ed. Elsevier.