

MODULE DESCRIPTOR

Module Title

Advanced Control Systems

Reference	ENM260	Version	1
Created	July 2024	SCQF Level	SCQF 11
Approved	June 2023	SCQF Points	15
Amended		ECTS Points	7.5

Aims of Module

To provide students with the ability to select, apply and evaluate principles and techniques to solve complex problems in advanced control systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Analyse fundamental principles and essential concepts of advanced control systems
- 2 Design advanced control system-based solutions using fundamental principles and concepts.
- 3 Evaluate performance and functioning of advanced control systems and solutions.

Indicative Module Content

State-space models, linear, nonlinear, adaptive, robust and model predictive controller techniques, transient and steady-state responses, stability analysis, compensator design, controllability and observability, Observer design, linear, nonlinear, adaptive, robust and model predictive controller implementation, PLC controller.

Module Delivery

This module will be delivered by means of lectures, tutorials and self-guided study, integrated with computer-based applications.

Indicative Student Workload		Part Time
Contact Hours	30	N/A
Non-Contact Hours	120	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL		N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Coursework	Weighting:	100%	Outcomes Assessed:	1, 2, 3
Description:	The coursework consists of a written technical report to examine, critique, design and implement advanced control systems and techniques.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises 100% of the module grade. To pass the module, a D grade is required.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	C
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	None.
Corequisites for module	None.
Precluded Modules	None.

INDICATIVE BIBLIOGRAPHY

- 1 B. Siciliano, O. Khatib eds., ?Springer Handbook of Robotics?, Springer-Verlag, Berlin, 2016
- 2 J. J. Craig, ?Introduction to Robotics: Mechanics and Control?, 4th edition, Pearson Prentice Hall, USA, 2017
- 3 P. Corke, ?Robotics and Control?, Springer-Verlag, Berlin, 2022
- 4 Slotine J.J.E, Weiping L, Applied Nonlinear Control, 1991. Prentice Hall.
- 5 Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Robot Modeling and Control, 2nd Edition, 2020, Wiley.