

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR					
Module Title					
Materials and Corrosion Science					
Reference	ENM233	Version	4		
Created	April 2017	SCQF Level	SCQF 11		
Approved	April 2006	SCQF Points	15		
Amended	June 2017	ECTS Points	7.5		

Aims of Module

To develop an understanding of the properties of materials used within the oil and gas industries, their uses, limitations and design constraints. To develop an understanding of corrosion science and mechanisms, with particular reference to the oil and gas industry.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Analyse and discuss the properties, design constraints and limitations of the principal materials used within the oil and gas industry.
- 2 Critically evaluate the properties and characteristics of steels, its phases and its principal alloys.
- 3 Appraise the principal corrosion mechanisms relevant to oil and gas industry equipments and processes.
- 4 Critically evaluate corrosion prevention and control strategies.

Indicative Module Content

Properties of materials. Metals and Alloys. Ceramics, polymers and composites. Structure of materials, characterisation and clasification of materials. Fundamentals of structures. Steel composition and properties. Phase diagrams. Treatment processes. Alloy compositions. Corrosion principles and mechanisms. Corrosion management. Prevention and mitigation. Cathodic protection. Environmental effects. SSC, SCC. Corrosion control? by design and management. Material selection, surfactants and inhibitors, coatings. Porbaix and Evans diagrams. Failure Analysis. Fatigue life prediction. Safe life and fail safe design.

Module Delivery

This is a lecture and tutorial based full time course, with case study work, plus private study and discussion. The course is available an online distance learning module with online tutor support. A blend of distance learning and direct attendance is also possible.

Module Ref: ENM233 v4

Indicative Student Workload		Part Time
Contact Hours	50	60
Non-Contact Hours	100	90
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

50% Outcomes Assessed: 4 Type: Coursework Weighting: Description: A piece of coursework. **Component 2** Weighting: 50% Outcomes Assessed: Type: Examination 1, 2, 3 Description: A closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

In order to pass the module, students should achieve a mark of at least 40% in each component (which has a weighting of 30% or more) and an overall grade of D or greater.

Module Grade	Minimum Requirements to achieve Module Grade:	
Α	Greater than or equal to 70%	
В	In the range 60% to 69%	
С	In the range 55% to 59%	
D	In the range 50% to 54%	
E	In the range 40% to 49%	
F	Less than 40%	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Normally a UK 2.2 honours degree or above, in Engineering or a related discipline. Prerequisites for Module Proficiency in English language for academic purposes, or IELTS score of 6.5 or above.

Corequisites for module None.

This module is not suitable for students following an MSc in Professional Studies **Precluded Modules** programme unless they meet the entry qualifications stipulated in the University Regulations on admission and the prerequisites above.

Module Ref: ENM233 v4

INDICATIVE BIBLIOGRAPHY

- 1 CALLISTER, W., Rethwisch, David G. 2015. Materials Science and Engineering. Wiley
- 2 FONTANA, M., 1986. Corrosion Engineering. 3rd ed. McGraw Hill.
- Ahmad, Zaki, 2006. Principles of Corrosion Engineering and Corrosion Control, 1st ed. Boston, MA: Butterworth-Heinemann. 2006
- 4 Lazzari, Luciano, 2017. Engineering Tools for Corrosion: Design and Diagnosis San Diego: Elsevier Science