

MODULE DESCRIPTOR

Module Title

Subsea Pipeline and Riser Design

Reference	ENM229	Version	4
Created	August 2021	SCQF Level	SCQF 11
Approved	August 2013	SCQF Points	15
Amended	August 2021	ECTS Points	7.5

Aims of Module

To provide an in-depth knowledge and understanding of the theory and practical issues involved in subsea pipelines and risers, and their design and operation.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Demonstrate extensive, detailed critical knowledge and understanding of the types, properties, and manufacture, of pipelines.
- 2 Critically evaluate pipeline design factors (parameters), flow analysis and sizing of pipelines.
- 3 Apply and critically analyse the theory, concepts and principles of pipeline mechanical design.
- 4 Demonstrate extensive, detailed critical knowledge and understanding of environmental and topographical factors in the in-situ design of pipelines.
- 5 Apply and critically analyse the theory, concepts and principles of riser design.

Indicative Module Content

Introduction to Subsea Pipelines; Properties of Materials; Pipe Materials; Pipeline Fundamentals; Buckling; Pipeline Stability; Flow Regime and Thermal Loss; Spanning Pipelines; Introduction to Riser System; Types of Risers; Catenary Theory; Rise Pipe Stresses.

Module Delivery

This is a lecture and tutorial based full time course, with case study work, plus private study and discussion. The course is available an online learning module with online tutor support. A blend of online learning and direct attendance is also possible.

	Module Ref:	ENM22	9 v4
Indicative Student Workload		Full Time	Part Time
Contact Hours			60
Non-Contact Hours			90
Placement/Work-Based Learning Experience [Notional] Hours			N/A
TOTAL			150
Actual Placement hours for professional, statutory or regulatory bo			

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1					
Туре:	Coursework	Weighting:	50%	Outcomes Assessed:	5
Description:	Report.				
Component 2					
Туре:	Examination	Weighting:	50%	Outcomes Assessed:	1, 2, 3, 4
Description:	Closed book examination.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module has 2 components and an overall grade D is required to pass the module. The component weighting is as follows: C1 is worth 50% and C2 is worth 50%.

		Examination:						
		Α	В	С	D	Е	F	NS
	Α	А	А	В	В	С	Е	
	В	А	В	В	С	С	Е	
	С	В	В	С	С	D	Е	
Coursework:	D	В	С	С	D	D	Е	
	E	С	С	D	D	Е	Е	
	F	Е	Е	Е	Е	Е	F	
	NS	Non-submission of work by published deadline or non-attendance for examination						eadline or

Module Requirements

Prerequisites for ModuleNormally a UK honours degree, or equivalent, in Engineering or related discipline at
class 2.2 or above and proficiency in English language for academic purposes (IELTS
minimum score of 6.5 or equivalent).Corequisites for moduleNone.Precluded ModulesThis module is not suitable for students following an MSc in Professional Studies
programme unless they meet the entry qualifications stipulated in the University
Regulations on admission and the prerequisites above.

ADDITIONAL NOTES

Part Time refers to Online Learning (OL)

Module Ref: ENM229 v4

INDICATIVE BIBLIOGRAPHY

- 1 BAI, Y. and BAI, Q., 2005. Subsea Pipelines & Risers. Elsevier.
- 2 BRAESTRUP, M.W. ed, 2005. Design and Installation of Marine Pipelines. Blackwell UK.
- 3 PALMER, A. C. and KING, R. A., 2004. Subsea Pipeline Engineering. PennWell.
- 4 DNVGL-RP-F109 On-bottom stability design of submarine pipelines
- ⁵ HEARN, E.J. 1997 Mechanics of Materials, Vol 1: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd Ed. Oxford: Butterworth-Heinemann.
- 6 GUO, B. et al. 2005. Offshore Pipelines. Burlington, MA: Gulf Professional Publishing.
- 7 KYRIAKIDES, S., CORONA, E. 2007. Mechanics of Offshore Pipelines, Vol 1:Buckling and Collapse. Oxford: Elsevier.