

MODULE DESCRIPTOR

Module Title

Real-Time Embedded Systems

Reference	EN5503	Version	6
Created	August 2021	SCQF Level	SCQF 11
Approved	January 2010	SCQF Points	15
Amended	August 2021	ECTS Points	7.5

Aims of Module

To enable the student to develop the skills and knowledge involved in the design and implementation of real-time embedded systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Design interfaces between microprocessors and peripheral devices.
- 2 Design and implement software for real-time embedded systems which control and monitor external hardware.

Indicative Module Content

Microcontroller based systems: architecture, integrated peripherals, timers, serial peripheral interfaces, exception handling. Real-time systems: Multi-tasking, real-time operating systems. Inter-task communication and synchronisation. Resource scheduling, allocation and protection, structures of queues and tables, device interfaces, task scheduling. Methods and tools for the development of real-time systems. Embedded Systems: Nature of embedded systems, applications, hardware requirements, case studies, impact on software development. Software development process. Debugging support. Fuzzy Logic: for real-time microcontroller based systems. Interface Design: bus systems, address decoding, registers and buffering, development of interface driver software.

Module Delivery

The module is taught using a structured programme of lectures, tutorials, laboratories and student-centred learning. The development of a practical real-time embedded system will form a major element of the practical work.

	Module Ref:	EN5503	3 v6
Indicative Student Workload		Full Time	Part Time
Contact Hours		38	38
Non-Contact Hours		112	112
Placement/Work-Based Learning Experience [Notional] Hours			N/A
TOTAL			150
Actual Placement hours for professional, statutory or regulatory body			

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1	l				
Туре:	Coursework	Weighting:	30%	Outcomes Assessed:	1
Description:	Design and developme	ent of a microprocess	or interfa	ce.	
Component 2	2				
Туре:	Coursework	Weighting:	70%	Outcomes Assessed:	2
Description:	Mini project involving t systems.	he development of so	oftware fo	r real-time applications on microcontroll	er

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module has 2 components and to gain an overall pass a minimum D grade must be achieved in each component. The component weighting is as follows: C1 is worth 30% and C2 is worth 70%.

		Coursework:						
		Α	В	С	D	Е	F	NS
	Α	А	А	В	В	Е	Е	
	В	В	В	В	С	Е	Е	
	С	В	С	С	С	Е	Е	
Coursework:	D	С	С	D	D	Е	Е	
	Е	Е	Е	Е	Е	Е	F	
	F	F	F	F	F	F	F	
	NS	Non-submission of work by published deadline or non-attendance for examination					l ination	

Module Requirements				
Prerequisites for Module	None.			
Corequisites for module	None.			
Precluded Modules	None.			

Module Ref: EN5503 v6

INDICATIVE BIBLIOGRAPHY

- 1 CADY, F. M., 2007. Software and Hardware Engineering. 2nd ed. Oxford University Press.
- 2 VALVANO, J. W., 2006. Developing Embedded Software in C Using IC11/IC12/Metrowerks. Brooks/Cole Pub. Co..
- 3 BARRY, R., 2010. FreeRTOS eBook Standard Edition: Using FreeRTOS Real Time Kernel A Practical Guide. Real Time Engineering Ltd..