

# This Version is No Longer Current

The latest version of this module is available here

| MODULE DESCRIPTOR          |               |             |         |  |  |
|----------------------------|---------------|-------------|---------|--|--|
| Module Title               |               |             |         |  |  |
| Real-Time Embedded Systems |               |             |         |  |  |
| Reference                  | EN5503        | Version     | 5       |  |  |
| Created                    | December 2017 | SCQF Level  | SCQF 11 |  |  |
| Approved                   | January 2010  | SCQF Points | 15      |  |  |
| Amended                    | May 2019      | ECTS Points | 7.5     |  |  |

#### **Aims of Module**

To enable the student to develop the skills and knowledge involved in the design and implementation of real-time embedded systems.

## **Learning Outcomes for Module**

On completion of this module, students are expected to be able to:

- 1 Design interfaces between microprocessors and peripheral devices.
- 2 Design and implement software for real-time embedded systems which control and monitor external hardware.

#### **Indicative Module Content**

Microcontroller based systems: architecture, integrated peripherals, timers, serial peripheral interfaces, exception handling. Real-time systems: Multi-tasking, real-time operating systems. Inter-task communication and synchronisation. Resource scheduling, allocation and protection, structures of queues and tables, device interfaces, task scheduling. Methods and tools for the development of real-time systems. Embedded Systems: Nature of embedded systems, applications, hardware requirements, case studies, impact on software development. Software development process. Debugging support. Fuzzy Logic: for real-time microcontroller based systems. Interface Design: bus systems, address decoding, registers and buffering, development of interface driver software.

#### **Module Delivery**

The module is taught using a structured programme of lectures, tutorials, laboratories and student-centred learning. The development of a practical real-time embedded system will form a major element of the practical work.

| Indicative Student Workload                                           | Full Time | Part Time |
|-----------------------------------------------------------------------|-----------|-----------|
| Contact Hours                                                         | 38        | 38        |
| Non-Contact Hours                                                     | 112       | 112       |
| Placement/Work-Based Learning Experience [Notional] Hours             |           | N/A       |
| TOTAL                                                                 | 150       | 150       |
| Actual Placement hours for professional, statutory or regulatory body |           |           |

Module Ref: EN5503 v5

#### **ASSESSMENT PLAN**

If a major/minor model is used and box is ticked, % weightings below are indicative only.

### **Component 1**

Type: Coursework Weighting: 30% Outcomes Assessed: 1

Description: Design and development of a microprocessor interface.

## **Component 2**

Type: Coursework Weighting: 70% Outcomes Assessed: 2

Description:

Mini project involving the development of software for real-time applications on microcontroller

systems.

#### MODULE PERFORMANCE DESCRIPTOR

#### **Explanatory Text**

A minimum of 40% in each component and an aggregate of 50% or above.

| Module Grade | Minimum Requirements to achieve Module Grade:                                  |  |
|--------------|--------------------------------------------------------------------------------|--|
| Α            | 70% - 100%                                                                     |  |
| В            | 60% - 69%                                                                      |  |
| С            | 55% - 59%                                                                      |  |
| D            | 50% - 54%                                                                      |  |
| E            | 40% - 49%                                                                      |  |
| F            | 0% - 39%                                                                       |  |
| NS           | Non-submission of work by published deadline or non-attendance for examination |  |

## **Module Requirements**

Prerequisites for Module None.

Corequisites for module None.

Precluded Modules None.

# **INDICATIVE BIBLIOGRAPHY**

- 1 CADY, F. M., 2007. Software and Hardware Engineering. 2nd ed. Oxford University Press.
- 2 VALVANO, J. W., 2006. Developing Embedded Software in C Using IC11/IC12/Metrowerks. Brooks/Cole Pub. Co..
- BARRY, R., 2010. FreeRTOS eBook Standard Edition: Using FreeRTOS Real Time Kernel A Practical Guide. Real Time Engineering Ltd..