	Reference EN5503 SCQF SCQF
Module Title Real-Time Embedded Systems Keywords Real-time Systems, Embedded Systems, Microcontrollers, Interface Design	Level 11 SCQF Points 15
	ECTS Points 7.5 Created May 2002
	Approved January 2010
	Amended August 2011
	Version No. 2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites	for	Mod	ule
----------------------	-----	-----	-----

Computer architecture (EN3540) or equivalent

Interface Design: bus systems, address decoding, registers and buffering, development of interface driver software.

Full

Part

Corequisite Modules

Precluded Modules

None.

None.

Aims of Module

To enable the student to develop the skills and knowledge involved in the design and implementation of real-time embedded systems.

Learning Outcomes for Module

Indicative Student Workload

Contact Hours	Time	Time
Laboratories	26	26
Lectures/Tutorials	12	12
Directed Study Directed Self Study/Coursework preparation	37	37
Private Study Private Study	75	75

Mode of Delivery

The module is taught using a structured programme of lectures, tutorials, laboratories and

on completion of this module, students are expected to be able to:

- 1.Design interfaces between microprocessors and peripheral devices.
- 2.Design and implement software for real-time embedded systems which control and monitor external hardware.

Indicative Module Content

Microcontroller based systems: architecture, integrated peripherals, timers, serial peripheral interfaces, exception handling. Real-time systems: Multi-tasking, real-time operating systems. Inter-task communication and synchronisation. Resource scheduling, allocation and protection, structures of queues and tables, device interfaces, task scheduling. Methods and tools for the development of real-time systems. Embedded Systems: Nature of embedded systems, applications, hardware requirements, case studies, impact on software development. Software development process. Debugging support.

Fuzzy Logic: for real-time microcontroller based systems.

student-centred learning. The development of a practical real-time embedded system will form a major element of the practical work.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1
Component 2	2

Component 2 is a mini project which involves the development of high-level software for real-time applications implemented on micro-controller systems. (Weighting 70%)

Component 1 is a coursework which involves the design and development of a microprocessor interface. (Weighting 30%)

Indicative Bibliography

- 1.CADY, F. M., 2007. Software and Hardware Engineering. 2nd ed. Oxford University Press.
- 2.VALVANO, J. W., 2006.

 Developing Embedded Software in C Using IC11/IC12/Metrowerks.

 Brooks/Cole Pub. Co..
- 3.BARRY, R., 2010. FreeRTOS eBook Standard Edition: Using FreeRTOS Real Time Kernel - A Practical Guide. Real Time Engineering Ltd..