

MODULE DESCRIPTOR **Module Title** Advanced Thermofluids 7 Reference EN5501 Version Created March 2023 SCQF Level SCQF 11 Approved March 2004 SCQF Points 15 Amended **ECTS Points** 7.5 August 2023

Aims of Module

To establish competence in the theory and practice of Fluid Mechanics and Computational Fluid Dynamics, particularly applied to the energy industries.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Appraise advanced concepts related to complex flow systems, boundary layers, turbulence and thermofluids properties.
- 2 Evaluate various analytical and numerical analysis techniques for solving complex fluid dynamics problems.
- Analyse thermal processes by synthesising basic principles of Finite Element analysis for heat transfer applications.
- Construct CFD models for complex fluid flow and heat transfer problems evaluating the effectiveness of the methods used.

Indicative Module Content

Fundamentals of Fluid Mechanics: the conservation laws and their application, viscosity/rheometry and the constitutive equations, boundary layers, turbulence and thermofluid properties. Comptational Fluid Dynamics. Overview of discretisation methods: Finite Difference, Finite Element, Finite Volume. Boundary layers, turbulence models, compressible flows, flows with heat transfer. Validation of CFD. Applications taken from (but not limited to): aerodynamics, atmospherics (wind energy), oceanic flows (wave energy), open and closed channel flow (tidal energy), oil & gas industry (tubulars and process plant), acquifers (oil & gas, water, geothermal), industrial hydraulics and pneumatics.

Module Delivery

The module will be delivered by means of lectures and tutorials supporting CFD laboratories and practical work. Academic and industrial seminars will be held when possible.

Module Ref: EN5501 v7

Indicative Student Workload	Full Time	Part Time
Contact Hours	48	N/A
Non-Contact Hours	102	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: A report after solving a practical thermofluid problem using numerical techniques.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises of 100% of the module grade. To pass the module, a D grade is required.

Module Grade	Minimum Requirements to achieve Module Grade:	
Α	A	
В	В	
С	С	
D	D	
E	E	
F	F	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Prerequisites for Module Plant Performance (EN4700) or equivalent

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- VERSTEEG, H. and MALALASEKERA, W., 2007, An introduction to computational fluid dynamics-The finite volume method, 2nd ed. Harlow:Pearson
- FERZIGER, JOEL H and MILOVAN PERIC., 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
- 3 CFD online documentation.