

MODULE DESCRIPTOR

Module Title

Advanced Thermofluids

Reference	EN5501	Version	7
Created	March 2023	SCQF Level	SCQF 11
Approved	March 2004	SCQF Points	15
Amended	August 2023	ECTS Points	7.5

Aims of Module

To establish competence in the theory and practice of Fluid Mechanics and Computational Fluid Dynamics, particularly applied to the energy industries.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Appraise advanced concepts related to complex flow systems, boundary layers, turbulence and thermofluids properties.
- 2 Evaluate various analytical and numerical analysis techniques for solving complex fluid dynamics problems.
- 3 Analyse thermal processes by synthesising basic principles of Finite Element analysis for heat transfer applications.
- 4 Construct CFD models for complex fluid flow and heat transfer problems evaluating the effectiveness of the methods used.

Indicative Module Content

Fundamentals of Fluid Mechanics: the conservation laws and their application, viscosity/rheometry and the constitutive equations, boundary layers, turbulence and thermofluid properties. Comptational Fluid Dynamics. Overview of discretisation methods: Finite Difference, Finite Element, Finite Volume. Boundary layers, turbulence models, compressible flows, flows with heat transfer. Validation of CFD. Applications taken from (but not limited to): aerodynamics, atmospherics (wind energy), oceanic flows (wave energy), open and closed channel flow (tidal energy), oil & gas industry (tubulars and process plant), acquifers (oil & gas, water, geothermal), industrial hydraulics and pneumatics.

Module Delivery

The module will be delivered by means of lectures and tutorials supporting CFD laboratories and practical work. Academic and industrial seminars will be held when possible.

	Module Ref:	EN5501	v7
Indicative Student Workload		Full Time	Part Time
Contact Hours		48	N/A
Non-Contact Hours		102	N/A
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	N/A
Actual Placement hours for professional, statutory or regulatory body	dy		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Coursework	Weighting:	100%	Outcomes Assessed:	1, 2, 3, 4
Description:	A report after solvir	ng a practical ther	mofluid pi	roblem using numerical techniques	š.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises of 100% of the module grade. To pass the module, a D grade is required.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	C
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	Plant Performance (EN4700) or equivalent
Corequisites for module	None.
Precluded Modules	None.

INDICATIVE BIBLIOGRAPHY

- 1 VERSTEEG, H. and MALALASEKERA, W., 2007, An introduction to computational fluid dynamics-The finite volume method, 2nd ed. Harlow:Pearson
- 2 FERZIGER, JOEL H and MILOVAN PERIC., 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
- 3 CFD online documentation.