

### This Version is No Longer Current

The latest version of this module is available here

| MODULE DESCRIPTOR |                |             |         |  |  |
|-------------------|----------------|-------------|---------|--|--|
| Module Title      |                |             |         |  |  |
| Advanced Therm    | ofluids        |             |         |  |  |
| Reference         | EN5501         | Version     | 5       |  |  |
| Created           | September 2021 | SCQF Level  | SCQF 11 |  |  |
| Approved          | March 2004     | SCQF Points | 15      |  |  |
| Amended           | September 2021 | ECTS Points | 7.5     |  |  |

## **Aims of Module**

To establish competence in the theory and practice of Fluid Mechanics and Computational Fluid Dynamics, particularly applied to the energy industries.

#### **Learning Outcomes for Module**

On completion of this module, students are expected to be able to:

- Explain fundamental concepts related to the conservation laws of fluid dynamics and their applications, boundary layers, turbulence and thermofluids properties
- 2 Solve governing equations of fluid dynamics using various analytical techniques
- Demonstrate competence in using state of the art CFD software for solving fluid flow and heat transfer problem
- 4 Use CFD software for solving complex fluid flow and heat transfer problems and provide analysis of results

#### **Indicative Module Content**

Fundamentals of Fluid Mechanics: the conservation laws and their application, viscosity/rheometry and the constitutive equations, boundary layers, turbulence and thermofluid properties. Comptational Fluid Dynamics. Overview of discretisation methods: FD, FE, FV etc.. The finite volume method of discretisation. Newtonian and non-Newtonian flows, boundary layers, turbulence, compressible flows, flows with heat transfer. Validation of CFD. Applications taken from (but not limited to): lubrication, aerodynamics, atmospherics (wind energy), oceanic flows (wave energy), open and closed channel flow (tidal energy), oil & gas industry (tubulars and process plant), acquifers (oil & gas, water, geothermal), industrial hydraulics and pneumatics.

### **Module Delivery**

The module will be delivered by means of lectures and tutorials supporting CFD laboratories and practical work. Academic and industrial seminars will be held when possible.

Module Ref: EN5501 v5

| Indicative Student Workload                                           |     | Part Time |
|-----------------------------------------------------------------------|-----|-----------|
| Contact Hours                                                         | 48  | N/A       |
| Non-Contact Hours                                                     | 102 | N/A       |
| Placement/Work-Based Learning Experience [Notional] Hours             |     | N/A       |
| TOTAL                                                                 | 150 | N/A       |
| Actual Placement hours for professional, statutory or regulatory body |     |           |

### **ASSESSMENT PLAN**

If a major/minor model is used and box is ticked, % weightings below are indicative only.

### **Component 1**

Type: Coursework Weighting: 20% Outcomes Assessed: 1, 2

Description: In-class test.

Component 2

Type: Coursework Weighting: 30% Outcomes Assessed: 3

Description: A written reflective statement based on CFD simulations.

**Component 3** 

Type: Coursework Weighting: 50% Outcomes Assessed: 4

Description: A six page report after solving a practical thermofluid problem using a CFD code.

### **MODULE PERFORMANCE DESCRIPTOR**

#### **Explanatory Text**

To pass the module the student must achieve a minimum of a grade D. Non-submission of any component will result in an NS grade.

| result in an resignate. |                                                                                                                                       |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module Grade            | Minimum Requirements to achieve Module Grade:                                                                                         |  |  |
| A                       | A in Component 3 and at least B in remaining components.                                                                              |  |  |
| В                       | A in Component 3 and at least D in remaining components OR B in Component 3 and at least C in remaining components.                   |  |  |
| С                       | C in Component 3 and at least D in remaining components OR D in Component 3 and at least A and D, or B and C in remaining components. |  |  |
| D                       | D in Component 3 and at least D in remaining components.                                                                              |  |  |
| E                       | E in one or more components.                                                                                                          |  |  |
| F                       | F in one or more components.                                                                                                          |  |  |
| NS                      | Non-submission of work by published deadline or non-attendance for examination                                                        |  |  |

# **Module Requirements**

Prerequisites for Module Plant Performance (EN4700) or equivalent

Corequisites for module None.

Precluded Modules None.

Module Ref: EN5501 v5

## **INDICATIVE BIBLIOGRAPHY**

VERSTEEG, H. and MALALASEKERA, W., 2007, An introduction to computational fluid dynamics-The finite volume method, 2nd ed. Harlow:Pearson

- FERZIGER, JOEL H and MILOVAN PERIC., 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
- 3 CFD online documentation.