	Reference SCQF	EN5501 SCQF
Module Title	Level	11
Advanced Thermofluids	SCQF Poir	nts 15
	ECTS Poir	nts 7.5
Keywords Thermofluids, Computational Fluid Dynamics, CFD, rheometry, turbulence, boundary layers,	Created	January 2004 March
compressible flows, heat transfer, discretisation	Approved	2004
methods, finite volume method	Amended	July 2012
	Version No	D. 3

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module	Applications taken from (but not
	limited to): lubrication, aerodynamics,
Plant Performance (EN4700)	atmospherics (wind energy), oceanic
or equivalent	flows (wave energy), open and closed
	channel flow (tidal energy), oil & gas
Corequisite Modules	industry (tubulars and process plant),
	acquifers (oil & gas, water,
None.	geothermal), industrial hydraulics and
	pneumatics.
Precluded Modules	
None.	Indicative Student Workload

Aims of Module

To establish competence in the theory and practice of Fluid Mechanics and Computational Fluid Dynamics, particularly applied to the energy industries.

Indicative Student Workload

	Full	Part
Contact Hours	Time	Time
Assessment	2	2
Laboratories	18	18
Lectures	12	12
Seminars	2	2
Tutorials	6	6
Directed Study		
Self-study/coursework	36	36

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1.Explain fundamental concepts related to the conservation laws of fluid dynamics and their applications, boundary layers, turbulence and thermofluids properties
- 2.Solve governing equations of fluid dynamics using various analytical techniques
- 3.Demonstrate competence in using state of the art CFD software for solving fluid flow and heat transfer problem
- 4.Use CFD software for solving complex fluid flow and heat transfer problems and provide analysis of results

Indicative Module Content

Fundamentals of Fluid Mechanics: the conservation laws and their application, viscosity/rheometry and the constitutive equations, boundary layers, turbulence and thermofluid properties.

Comptational Fluid Dynamics. Overview of

Private Study	
Private Study	74

74

Mode of Delivery

The module will be delivered by means of lectures and tutorials supporting CFD laboratories and practical work. Academic and industrial seminars will be held when possible.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2
Component 2	3
Component 3	4

Component 1 is a coursework which involves an in-class test (20% weighting)

Component 3 is a coursework which involves submitting a report after completing a CFD analysis of a specified problem (50% weighting)

Component 2 is a coursework which involves submitting a report containing reflective statement on completed CFD tutorials (30% weighting) discretisation methods: FD, FE, FV etc.. The finite volume method of discretisation. Newtonian and non-Newtonian flows, boundary layers, turbulence, compressible flows, flows with heat transfer. Validation of CFD.

Indicative Bibliography

 VERSTEEG, H. and MALALASEKERA, W., 2007, An introduction to computational fluid dynamics-The finite volume method, 2nd ed. Harlow:Pearson
FERZIGER, JOEL H and

- MILOVAN PERIC., 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
- 3.CFD online documentation.