

## This Version is No Longer Current

The latest version of this module is available here

#### **MODULE DESCRIPTOR**

#### **Module Title**

| Failure Analysis |             |             |         |
|------------------|-------------|-------------|---------|
| Reference        | EN4701      | Version     | 4       |
| Created          | August 2021 | SCQF Level  | SCQF 10 |
| Approved         | March 2004  | SCQF Points | 15      |
| Amended          | August 2021 | ECTS Points | 7.5     |

### Aims of Module

To provide the student with the ability to relate the mechanisms of engineering failures, and methods for their detection, to the incipient and wear-out failure of engineering systems.

#### Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Assess the properties of materials and their modes of failure under adverse environmental conditions.
- Apply the relevant analysis and failure criteria to the solution of complex stress systems and determine the fracture toughness, crack growth and creep behaviour of engineering materials.
- 3 Analyse and evaluate typical operational problems in rotating machinery.
- 4 Identify and appraise condition monitoring and non-destructive testing techniques as applied to industrial plant.

#### **Indicative Module Content**

Microstructural properties of materials; analysis of microstructures; applications of microstructural analysis to failure mechanisms of materials; dielectric properties and degradation processes. Modelling of complex stress systems; failure analysis; fracture toughness and stress intensity factors; crack growth and material failure mechanisms; creep and creep stress relaxation. Operational problems in rotating machinery; unbalance; misalignment bearing and gear faults; mechanical resonance. Condition monitoring methods including vibration. Non-destructive testing methods including acoustic emission.

#### **Module Delivery**

The module is taught using a a balanced programme of lectures, tutorials and self-study. Case studies are used to illustrate industrial applications.

|                                                                       | Module Ref: | EN4701    | l v4      |
|-----------------------------------------------------------------------|-------------|-----------|-----------|
|                                                                       |             |           |           |
| Indicative Student Workload                                           |             | Full Time | Part Time |
| Contact Hours                                                         |             | 45        | 45        |
| Non-Contact Hours                                                     |             | 105       | 105       |
| Placement/Work-Based Learning Experience [Notional] Hours             |             | N/A       | N/A       |
| TOTAL                                                                 |             | 150       | 150       |
| Actual Placement hours for professional, statutory or regulatory body |             |           |           |

### ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

| Component 1  |             |            |     |                    |   |
|--------------|-------------|------------|-----|--------------------|---|
| Туре:        | Examination | Weighting: | 30% | Outcomes Assessed: | 1 |
| Description: | Coursework. |            |     |                    |   |

# MODULE PERFORMANCE DESCRIPTOR

## **Explanatory Text**

The module has 2 components and to gain an overall pass a minimum D grade must be achieved in each component. The component weighting is as follows: C1 is worth 30% and C2 is worth 70%.

|              |   | Coursework:                                                                    |   |   |   |   |   |    |
|--------------|---|--------------------------------------------------------------------------------|---|---|---|---|---|----|
|              |   | Α                                                                              | В | С | D | Е | F | NS |
|              | Α | А                                                                              | А | В | В | Е | Е |    |
|              | В | В                                                                              | В | В | С | Е | Е |    |
|              | С | В                                                                              | С | С | С | Е | Е |    |
| Examination: | D | С                                                                              | С | D | D | Е | Е |    |
| 1            | E | Е                                                                              | Е | Е | Е | Е | F |    |
|              | F | F                                                                              | F | F | F | F | F |    |
| Ν            |   | Non-submission of work by published deadline or non-attendance for examination |   |   |   |   |   |    |

| Module Requirements      |                                                |
|--------------------------|------------------------------------------------|
| Prerequisites for Module | Engineering Analysis 1 (EN3501) or equivalent. |
| Corequisites for module  | None.                                          |
| Precluded Modules        | None.                                          |
|                          |                                                |

## **ADDITIONAL NOTES**

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.

#### INDICATIVE BIBLIOGRAPHY

- 1 DOWLING, N.E., 2013. Mechanical Behaviour of Materials. 4th ed. Upper Saddle River, NJ: Prentice Hall.
- 2 HERTZBERG, R.W., 2013. Deformation and Fracture Mechanics of Engineering Materials. 5th ed. New York, NY: Wiley.
- 3 CALLISTER, W.D., 2015. Materials Science and Engineering. 9th ed. New York, NY: Wiley.
- 4 BARRON. R, 1996. Engineering Condition Monitoring: Practice, Methods and Applications. Essex: Addison Wesley Longman.
- 5 ROYLANCE, B.J. and HUNT, T.M., 1999. The Wear Debris Analysis Handbook. Oxford: Coxmoor Publishing Co.
- 6 REEVES, C.W., 1998. The Vibration Monitoring Handbook. Oxford: Coxmoor Publishing Co.