

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR				
Module Title				
Failure Analysis				
Reference	EN4701	Version	3	
Created	July 2017	SCQF Level	SCQF 10	
Approved	March 2004	SCQF Points	15	
Amended	August 2017	ECTS Points	7.5	

Aims of Module

To provide the student with the ability to relate the mechanisms of engineering failures, and methods for their detection, to the incipient and wear-out failure of engineering systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Assess the properties of materials and their modes of failure under adverse environmental conditions.
- Apply the relevant analysis and failure criteria to the solution of complex stress systems and determine the fracture toughness, crack growth and creep behaviour of engineering materials.
- 3 Analyse and evaluate typical operational problems in rotating machinery.
- Identify and appraise condition monitoring and non-destructive testing techniques as applied to industrial plant.

Indicative Module Content

Microstructural properties of materials; analysis of microstructures; applications of microstructural analysis to failure mechanisms of materials; dielectric properties and degradation processes. Modelling of complex stress systems; failure analysis; fracture toughness and stress intensity factors; crack growth and material failure mechanisms; creep and creep stress relaxation. Operational problems in rotating machinery; unbalance; misalignment bearing and gear faults; mechanical resonance. Condition monitoring methods including vibration. Non-destructive testing methods including acoustic emission.

Module Delivery

The module is taught using a a balanced programme of lectures, tutorials and self-study. Case studies are used to illustrate industrial applications.

Module Ref: EN4701 v3

Indicative Student Workload		Part Time
Contact Hours	45	45
Non-Contact Hours	105	105
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 30% Outcomes Assessed: 1 Description: Case-study coursework assignment. **Component 2** Weighting: 70% Outcomes Assessed: Type: Examination 2, 3, 4 Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

In order to pass the module students must achieve at least a grade D overall AND a minimum of 35% in the examination and coursework.

Module Grade	Minimum Requirements to achieve Module Grade:	
Α	70% and above	
В	60-69%	
С	50-59%	
D	40-49%	
E	35-39%	
F	34% and below	
NS	Non-submission of work by published deadline or non-attendance for examination	

Module Requirements

Prerequisites for Module Engineering Analysis 1 (EN3501) or equivalent. Corequisites for module None. **Precluded Modules** None.

ADDITIONAL NOTES

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.

Module Ref: EN4701 v3

INDICATIVE BIBLIOGRAPHY

1 DOWLING, N.E., 2013. Mechanical Behaviour of Materials. 4th ed. Upper Saddle River, NJ: Prentice Hall.

- HERTZBERG, R.W., 2013. Deformation and Fracture Mechanics of Engineering Materials. 5th ed. New York, NY: Wiley.
- 3 CALLISTER, W.D., 2015. Materials Science and Engineering. 9th ed. New York, NY: Wiley.
- BARRON. R, 1996. Engineering Condition Monitoring: Practice, Methods and Applications. Essex: Addison Wesley Longman.
- ROYLANCE, B.J. and HUNT, T.M., 1999. The Wear Debris Analysis Handbook. Oxford: Coxmoor Publishing Co.
- 6 REEVES, C.W., 1998. The Vibration Monitoring Handbook. Oxford: Coxmoor Publishing Co.