	Reference SCOF	EN4700 SCOF
Module Title	Level	10
Plant Performance	SCQF Poin	ts 15
	ECTS Poin	ts 7.5
Keywords	Created Ju	ıly 2002
Compressible flow, mass transfer, combustion systems, membrane processes, 2-D and 3-D thermal	Approved	March 2004
conduction, heat exchangers	Amended	August 2011
	Version No	o. 2

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Membrane processes	s; applicati	on to g fuel
Industrial Plant (EN3700)	cells, reactors and ga	is production	on.
Corequisite Modules	momentum transfer application to equipr	and their nent design	n.
None.	TI TITI TITI	0	
Precluded Modules None.	Two and three dimen modelling of heat tra Basic finite element and practice applied	nsional nur Insfer proc analysis th to heat trai	nerical esses. eory nsfer
Atom of Madula	problems.		
Aims of Module	Alternative frale		ingtige
To provide the student with	and process integrati	on, proces	s
the ability to apply the heat,	intensification; pinch technology,		
mass and momentum transfer	optimisation of heat	exchanger	
mechanisms to plant	networks.		
performance.			
	Indicative Student	Workload	
Learning Outcomes for		Full	Part
Module	Contact Hours	Time	Time
	Lectures	24	24
On completion of this	Tutorials	12	12

module, students are expected to be able to:

- 1.Apply compressible flow principles to duct flows and analyse the behaviour of relief and blowdown systems in process plant and pipeline equipment.
- 2.Apply heat, mass and momentum transfer principles to the design of heat exchangers, combustion systems and energy transfer processes.
- 3.Explain 2 and 3 dimensional numerical modelling of thermal processes and basic principles of FE analysis for heat transfer.
- 4.Discuss the mechanisms and significance of membrane processes and evaluate their role in developing alternative fuels and energy systems.

Indicative Module Content

Compressible flow in ducts, nozzles and valves, choked flows, blowdown and relief systems; hazard analysis and safety cases, application to pipeline operation and process plant, external flows.

Principles of chemical

Directed Study		
Directed		
self-study/Courswork	30	30
preparation		
Private Study		
Private Study	84	84

Mode of Delivery

The module will be delivered by means of lectures and tutorials and student-centred learning.

Assessment Plan

	Learning Outcomes Assessed
Component 1	3
Component 2	1,2,4

Component 2 is a closed book examination (70% weighting).

Component 1 is a coursework investigation and report based on use of numerical methods (30% weighting).

Indicative Bibliography

 KAYS, W.M. AND CRAWFORD, M., 1993. Convective Heat and Mass Transfer. 3rd ed. New York: McGraw Hill. thermodynamics and application to energy changes in combustion systems; adiabatic flame temperatures, effects of mixture strength, dissociation and pressure. Lean-burn and low-emissions systems.

Introduction to mass transfer principles; application to steady-state and transient systems, combined heat and mass transfer, combustion of liquid fuels in IC engines and gas turbines, partial condensers.

- 2.TREYBAL, R., 1980. Mass Transfer Operations. 3rd ed. New York: McGraw Hill.
- 3.CENGEL, Y.A., 2004. Heat Transfer: A Practical Approach. 2nd ed. New York: McGraw-Hill.
- 4.KAUSHIK, M., 2019, Theoretical and Experimental Aerodynamics. Springer Nature Singapore.