	Reference SCQF	EN4581 SCQF
	Level	10
Module Title	SCQF Poir	nts 15
Oil And Gas Engineering B	ECTS Poir	nts 7.5
	Created	May 2002
Keywords Petroleum Geology, Reservoir Drive Mechanisms	Approved	March 2004
	Amended	August 2011
	Version No	b . 2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module	Indicative Student Workload		
_		Full	Part
Offshore Engineering	Contact Hours	Time	Time
(EN3581)	Assessment	10	10
Corequisite Modules	Lectures	40	40
	Tutorials	10	10
None.	Directed Study		
Precluded Modules	Directed Study	20	20
None.	Private Study		
	Private Study	70	70

Aims of Module

To provide the student with the ability to apply the principles of petroleum geology, the properties of petroleum fluids and basic reservoir engineering.

Learning Outcomes for Module

Mode of Delivery

This is a lecture based module supplemented by tutorials, coursework and student-centred learning.

Assessment Plan

On completion of this module, students are expected to be able to:

- 1.Apply geological knowledge to the interpretation of exploration data.
- 2.Relate fluid and reservoir properties to drive mechanisms.
- 3.Relate the phase behaviour of the reservoir fluids to the production characteristics of the reservoir.
- 4. Apply material balance methods to predict production behaviour.
- 5.Predict reservoir and wellbore flow regimes, select and apply well completion and sub surface equipment.

Indicative Module Content

Principles of geology and their application to the origins of petroleum and its entrapment; geophysical survey methods and sub-surface mapping. Composition of oil and gas; properties of hydrocarbon gases and liquids; behaviour of real gases, compressibility factors, equations of state; phase behaviour of hydrocarbon systems. Production facilities. Oil and gas reservoirs; properties of reservoir rocks, fluid distributions, formation

Component 1	1
Component 2	1,2,3,4,5

Component 2 is a closed book examination. (70% weighting)

Component 1 is coursework based on a single case study. (30% weighting)

Indicative Bibliography

- 1.Lyons, William, Plisga Gary J. and Lorenz Michael, 3rd edition 2015.Standard Handbook of Petroleum and Natural Gas Engineering. Houston, Texas: Gulf Publishing.
- 2.Selley, Richard C., Third edition 2015. Elements of Petroleum Geology. San Diego, CA : Academic Press, [2015]
- 3.DAKE, L. 2001. The Practice of Reservoir Engineering. Amsterdam: Elsevier.
- 4.JAHN, F., COOK, M. AND GRAHAM, M., 2nd ed. M. 2008. Hydrocarbon Exploration and Production. Amsterdam: Elsevier.
- 5.ECONOMIDIES, M. J., HILL, A. D and EHLIG--ECONOMIDIES, C., 2nd edition 2013. Petroleum Production Systems. Upper Saddle River, NJ : Prentice Hall, c2013.

volume factors, drive mechanisms, primary, secondary and enhanced recovery; evaluation of reserves; application of material balance methods. Flow dynamics of reservoirs. Steady-state and unsteady-state flow, pressure distributions, formation damage, stimulation. Completion methods and their selection and application, perforating, sub-surface packers and safety valves. Field processing, vapour-liquid equilibria. Flash calculations, separator systems, hydrate formation and prevention, dehydration and sweetening.