	Reference SCQF	EN4560 SCQF
	Level	10
Module Title	SCQF Point	s 15
Electrical Machines And Drives 2	ECTS Point	s 7.5
Keywords	Created De	ecember 2003
Two-Axis Analysis, AC Drives, Machine Simulation	Approved	March 2004
	Amended	August 2011
	Version No.	3

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Introduction to flux-vector control of ac machines Matlab and Simulink analysis of ac machines and drive systems in steady-state and transient operation		
Electrical Machines and Drives 1 (EN3560) or equivalent.			
Corequisite Modules			
None.	operation		
Precluded Modules	Indicative Student Workload		
		Full	Part
None.	Contact Hours	Time	Time
	Assessment	6	6
Aims of Module	Laboratory	9	9
	Lecture	24	24
To provide the student with the ability to analyse the	Tutorial	12	12
performance and operation of ac	Directed Study		
to apply simulation techniques to		47	47
aid this analysis.	Private Study		
Laarning Autoomos for Modula	,	52	52

On completion of this module, students are expected to be able to:

- 1.Apply 2-axis analysis to the performance of 3-phase synchronous and induction motors.
- 2.Understand and analyse the operation of AC drive systems as applied to 3-phase induction motors.
- 3.Utilise simulation tools to analyse the transient performance of AC machines.

Indicative Module Content

Salient pole synchronous machines. Principles of operation, application and analysis.

Two-axis analysis. Generalised machine theory. Application to the transient analysis of both synchronous and induction machines.

AC drives: induction motor operation on variable-voltage variable frequency supplies, principles of self-commutated, variable-frequency inverter operation, control of output voltage. frequency and

Mode of Delivery

This is a lecture-based course supplemented with tutorial sessions, laboratory work and student-centred learning.

Assessment Plan

	Learning Outcomes Assessed
Component 1	3
Component 2	1,2

Component 2 is a closed book examination. (70% weighting)

Component 1 will consist of one laboratory report. (30% weighting)

Indicative Bibliography

- 1.FITZGERALD, A.E., KINGSLEY, C. and UMANS, S.D., 2003.6th ed. Electric Machinery. Singapore: McGraw-Hill
- 2.MOORTHI, V.R., 2005. Power Electronics. New Delhi: Oxford University Press.
- 3.ONG, CHEE-MUN., 1998. Dynamic Simulation of Electric Machinery. Upper Saddle River, NJ: Prentice Hall PTR

harmonics. Principles of braking and regeneration, slip energy recovery, stator voltage control, cycloconverters.