	Reference SCQF	EN4512 SCQF
Module Title Advanced Electronics Keywords high frequency electronics, noise, EMC, HDL, SoC, Digital design	Level SCQF Poin ECTS Poin Created	10 nts 15 nts 7.5 May 2002 March
	Approved Amended	2004 August 2011
	Version No	o. 2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module	Indicative Student Workload		
		Full	Part
Electronics 3 (EN3512), or its	Contact Hours	Time	Time
equivalent.	Assessment	2	2
Corequisite Modules	Laboratory	12	12
	Lectures/Tutorials	24	24
None.	Directed Study		
Precluded Modules	Directed Self Study/Coursework	48	48
None.	preparation		
Aims of Module	Private Study		
	Private Study	64	64

To provide the student with the ability to analyse, synthesise, simulate and implement complex electronic systems.

Learning Outcomes for Module

Mode of Delivery

This is a predominantly lecture-based course supplemented with tutorial sessions. The HDL content is lab-based.

On completion of this module,

Assessment Plan

students are expected to be able to:

- 1.Design high-frequency, wide-band circuits.
- 2.Analyse and design EMC-compliant systems.
- 3. Appreciate the principles of high-speed digital design
- 4.Analyse, design and synthesise digital systems using an HDL.

Indicative Module Content

High frequency transistor models, circuits employing wideband discrete and integrated devices, layout design considerations for high frequency.

Sources of noise in circuits and systems, circuit noise estimation and minimisation; sources of interference, EMC regulations, EM emissions and susceptability, design methods for EM compliance.

Principles of high-speed digital circuit design, reliability issues, system minimisation.

HDL design flow: system design and synthesis using HDL and software tools. System-level design of

	Learning Outcomes Assessed
Component 1	3,4
Component 2	1,2,3,4

Component 1 is coursework which is based on a laboratory design exercise, with preparatory and practical progress recorded in a logbook, and the submission of a final formal report (30% weighting).

Component 2 is closed book examination (70% weighting).

Indicative Bibliography

- 1.BEASLEY, J.S. and MILLER, G.M., 2014. Modern Electronic Communication. 9th ed. Essex: Pearson.
- 2.JOHNSON, H. and GRAHAM, M., 1993. High Speed Digital Design.2nd ed. Upper Saddle River, NJ: Prentice Hall.
- 3.ROTH, C.H., 2017. Digital Systems using VHDL. 3rd ed. Boston, MA: PWS Publishing.
- 4.SEDRA, A.S. and SMITH, K.C., 2014. Microelectronic Circuits. 7th ed. New York, NY: Oxford University Press.
- 5.WILLIAMS, T., 2016. EMC for Product Designers. 5th ed. Oxford: Newnes.

complex digital designs, SoC, IP blocks, implementation using Field Programmable devices (e.g. FPGA).

Additional Notes

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.