

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR

Module Title

Engineering Analysis 2			
Reference	EN4500	Version	3
Created	March 2017	SCQF Level	SCQF 10
Approved	March 2004	SCQF Points	15
Amended	June 2017	ECTS Points	7.5

Aims of Module

To provide the student with the ability to analyse and predict the behaviour of engineering components and systems

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Recognise and explain the fundamental princples of finite element methods and use finite element methods to analyse static structures.
- 2 Apply reliability techniques to engineering components and systems and evaluate outcomes.
- 3 Interpret the vibrational behaviour of complex systems.
- 4 Understand and analyse the behaviour of shrink fit and compound cylindrical components.

Indicative Module Content

Introduction to finite element analysis; application of FE methods in the solution of static 2D problems; vibration analysis of multi degree-of-freedom and continuous systems to periodic and transient loading; reliability analysis of repairable and non-repairable systems; shrink fits; compound cylinders.

Module Delivery

Module delivered by means of lectures, tutorials and self-guided study, integrated with computer-based applications.

Indicative Student Workload	Full Time	Part Time
Contact Hours	50	50
Non-Contact Hours	100	100
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

Module Ref: EN4500 v3

ASSESSMENT PLAN						
If a major/minor model is used and box is ticked, % weightings below are indicative only.						
Component 1						
Туре:	Coursework	Weighting:	30%	Outcomes Assessed:	1	
Description:	Coursework assessment using FEA theory and software.					
Component 2						
Туре:	Examination	Weighting:	70%	Outcomes Assessed:	2, 3, 4	
Description:	Closed book examination.					

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

To pass the module students must achieve at least a grade D AND at least 35% in the exam and coursework components.

Module Grade	Minimum Requirements to achieve Module Grade:		
Α	70% and above		
В	60-69%		
С	50-59%		
D	40-49%		
E	35-39%		
F	34% and below		
NS	Non-submission of work by published deadline or non-attendance for examination		

Module Requirements			
Engineering Analysis 1 (EN3501)			
None.			
None.			
1			

ADDITIONAL NOTES

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.

Module Ref: EN4500 v3

INDICATIVE BIBLIOGRAPHY

- 1 FAGAN, M.J., 1992. Finite Element Analysis : Theory and Practice. Harlow: Longman.
- 2 O'CONNOR P.D.T., 2011. Practical Reliability Engineering. 5th ed. Chichester: J Wiley & Sons.
- 3 DAVIDSON, J. and HUNSLEY, C., 1994. The Reliability of Mechanical Engineering Systems. London: Mechanical Engineering Publications.
- 4 KELLY S.G., 2012. Mechanical Vibrations: Theory and Applications (SI edition). Cengage Learning.
- 5 RAO, S.S., 2016, Mechanical Vibrations. 6th ed. Pearson Prentice Hall.