

MODULE DESCRIPTOR **Module Title** Mathematics 3 Reference EN3900 Version 6 Created April 2023 SCQF Level SCQF 9 Approved June 2002 **SCQF** Points 15 Amended **ECTS Points** 7.5 August 2023

Aims of Module

To provide the student with the ability to apply advanced mathematics techniques to applied problems in engineering.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Draw on eigen methods to identify the solution of problems in engineering.
- 2 Formulate solutions of partial differential equations by separation of variables and Fourier series.
- 3 Estimate solutions of partial differential equations by finite difference methods.
- 4 Using the vector differential operators grad, div and curl, formulate solutions to engineering problems.

Indicative Module Content

Eigenvalues and eigenvectors of matrices and their relation to second order systems including degenerate systems. Development and solution of differential equations using eigen-methods. Partial differential equations using separation of variables and Fourier series to include heat flow in one dimension, one-dimensional vibration and Laplaces equation. Finite difference methods to solve PDEs. Div, grad and curl and their identities. Application of the vector operators to problems in Science and Technology.

Module Delivery

Full-time students: The module is delivered using a series of lectures with associated tutorials where techniques can be applied. Part-time students: This module is delivered by a combination of lectures and tutorials online. It will be supported by online evening sessions.

Module Ref: EN3900 v6

Indicative Student Workload	Full Time	Part Time
Contact Hours	48	48
Non-Contact Hours	102	102
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises 100% of the module grade. A minimum of Grade D is required to pass the module.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	С
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module EN2901 Mathematics 2 or equivalent.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 KREYSZIG, A., 2011. Advanced Engineering Mathematics. 10th ed. J Wiley.
- 2 STROUD, K.A. and BOOTH, D.J., 2011. Advanced Engineering Mathematics. 5th ed. Palgrave.