	Reference EN370 SCQF SCQF	0
Module Title	Level	9
Industrial Plant	SCQF Points 1	5
	ECTS Points 7.	5
Keywords	Created May 200	2
Heat Transfer, Heat Exchangers, Power Cycles, Combined Heat And Power, Fluid Machinery,	Approved March 200	า 4
Dimensional Similarity.	Amended Augus 201	t 1
	Version No.	2

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Fluid machinery. Rotodynamic and	
	positive displacement machines,	
Thermofluids 2 (EN2702) or	cavitation. Dimensionless	
equivalent.	performance parameters. Interaction	
	with external system, matching and	
Corequisite Modules	machine performance	
	characteristics.	
None.		
	Indicative Student Workload	
Precluded Modules	Full Part	

None.

Aims of Module

To provide the student with the ability to evaluate the application of thermofluids to the performance characteristics and design of plant equipment and energy systems.

Learning Outcomes for Module

	Full	Part
Contact Hours	Time	Time
Laboratory	3	3
Lectures	36	36
Tutorials	12	12
Private Study		
Private Study	99	99

Mode of Delivery

This module is based on lectures and tutorials supplemented with directed study and laboratory work. On completion of this module, students are expected to be able to:

- 1.Analyse the performance characteristics of heat transfer equipment for gas and liquid flow systems.
- 2.Analyse the performance of gas, vapour and combined cycles, used for power generation and process heat supply.
- 3. Analyse the behaviour of rotodynamic machines and their interaction with fluid system requirements.

Indicative Module Content

Heat transfer mechanisms, convective heat transfer coefficients, dimensional analysis, correlations for laminar and turbulent flow. Heat exchangers.

Energy systems: Plant power & heat requirements; process heat, integration of heat and power. Prime movers - gas turbines and steam turbines. CHP systems.

Assessment Plan

	Learning Outcomes
	Assessed
Component 1	1,3
Component 2	1,2,3

Component 1 is coursework and a written laboratory report covering either LO 1 or 3. (30% weighting)

Component 2 is a closed book examination (70% weighting)

Indicative Bibliography

1.EASTOP, T. D. and

McCONKEY, A., 1993. Applied Themodynamics for Engineering Technologists. 5th ed. Harlow:Longman.

- 2.TURTON, R. K., 1995. Principles of Turbomachinery. 2nd ed. London:Chapman and Hall.
- 3.ROGERS, G. F. C. and MAYHEW, Y.R., 1992. Engineering Thermodynamics Work & Heat Transfer. 4th ed. Pearson Education Ltd.