	Reference	EN3570
	SCQF Level	SCQF 9
Module Title	SCQF Poin	ts 15
Energy Conversion and Storage	ECTS Poin	ts 7.5
Keywords Energy conversion, steam plant, turbo-machinery,	Created Do	ecember 2003 March
fuel cells, energy storage		2004 August
	Amended	2011
	Version No	o. 2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module

Statics and Dynamics (EN1700) or its equivalent.

Corequisite Modules

None.

Precluded Modules

None.

Aims of Module

To provide the student with the ability to apply fundamental technical concepts and principles in the appraisal and selection of energy conversion and storage devices. Energy storage requirements, principles, technologies and applications. Thermal energy storage, wet and dry systems; mechanical energy storage, flywheels, compressed air energy storage, pumped hydro schemes; electrical energy storage, battery systems, psb, vrb, ZnBr, NaS, Li-ion, lead-acid, metal-air, super capacitors, SMES; hydrogen energy systems, fuel cells, Regenesys system.

Indicative Student Workload

	Full	Part
Contact Hours	Time	Time
Assessment	2	2
Laboratories	6	6
Lectures	24	24
Tutorials	12	12

• • • •

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1.Quantify the essential features of energy conversion devices.
- 2.Identify and analyse typical operational problems which can occur in energy conversion and storage devices.
- 3.Critically evaluate energy conversion and storage reqirements and select suitable methods of meeting requirements.

Indicative Module Content

Heat pumps,

geo-thermal/ground source. Rankine cycle, Refrigeration & air conditioning, Combustion, Aspects of Steam Plant Design, Nuclear, IC Engines.

Turbo-Machinery: Well's Turbine, Hydraulic Turbines,Pelton, Francis,Kaplan. Dimensional analysis, performance laws, perfomance characteristics, specific speed, energy losses, hydraulic efficiency.

Directed Study

Private Study

56 56 50 50

Mode of Delivery

This is a lecture based course supported by tutorial sessions, laboratory work and student centred learning.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2,3
Component 2	1,2,3
Coursework	1,2,3
Examination	1,2,3

Component 2 is a closed book examination. (50% Weighting)

Component 1 is a combination of coursework and a written laboratory report. (50% Weighting)

Component 1 is a combination of coursework and a written laboratory report. (50% Weighting)

Component 2 is a closed book examination. (50% Weighting)

Indicative Bibliography

- 1.DIXON, S.L., 2013. Fluid Mechanics and Thermodynamics of Turbomachinery. 7th edition Boston, MA: Butterworth-Heinemann.
- 2.MASSEY, B., 2006. Mechanics of Fluids. 8th ed. London: Stanley Thornes.
- 3.EASTOP, T.D. AND CROFT, D.R., 1990. Energy Efficiency for Engineers and Technologists. Harlow: Pearson Higher Education/Longman