	Reference	EN3560	
	SCQF	SCQF SCQF 9	
	Level	SCQ1 9	
Module Title	SCQF Poin	ts 15 ts 7.5	
Electrical Machines And Drives 1	ECTS Poin	ts 7.5	
Keywords	Created D	ecember 2003	
3-phase motors, 1-phase motors, Special motors, Power Electronics, Simulation.	Approved	March 2004	
	Amended	August 2011	
	Version No	b . 2	

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for ModuleElectrical Power (EN2560).Corequisite ModulesNone.Precluded ModulesNone.	3-phase controlled r current relationships inductance, applicat of dc motors, dc cho operation, braking a and closed loop ope current control loop MATLAB Simulati machines: Power sy simulink.	s, influence tion to speed oppers, quad and reversing tration, speed s. on of dc and	of load l control lrant g, open d and l ac
Aims of Module	Indicative Student Workload		
To provide the student with the ability to analyse	<i>Contact Hours</i> Assessment	Full Time 6	Part Time
the performance of		-	
3-phase, 1-phase and	Laboratories	6	6
special machines and	Lectures	24	24
drives under steady-state conditions.	Tutorials Directed Study	12	12
		50	50

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1.Describe the operating characteristics of three-phase induction motors and analyse their performance under steady-state load conditions.
- 2.Explain the basic principles of operation of a range of special motors.
- 3.Apply power electronic converters to dc drive systems.

Indicative Module Content

3-phase induction motor principles, derivation of equivalent circuit, performance equations based on equivalent circuit, starting arrangements and speed control principles.

Single phase motors; analysis of steady-state operation of single-phase induction motors, starting arrangements; universal motor: hysteresis motor: Private Study

52

52

Mode of Delivery

This is a lecture based course supplemented with tutorial sessions, laboratory work and directed study.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1
Component 2	1,2,3

Component 2 is a closed book examination (70% weighting)

Component 1 will consist of a laboratory report. (30% weighting)

Indicative Bibliography

- 1.FITZGERALD,A.E.,KINGSLEY,C. and UMANS,S.D.,2013. Electric Machinery. 7th ed. Boston: McGraw-Hill.
- 2. WILDI, T., 2013. Electrical Machines, Drives and Power Systems. 6th ed. London: Prentice Hall.
- 3.GURU, B. S. and HIZIROGLU, H. R., 2001. Electrical Machinery and Transformers. 3rd ed. Oxford: Oxford University Press.

synchronous reluctance motor.

Special motors; stepper motors, types, principles, characteristics and control; switched reluctance motors, principles and applications; brushless dc motors. 4. MOORTHI, V.R., 2005. Power Electronics. New Delhi: Oxford University Press