

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR							
Module Title							
Electronics 3							
Reference	EN3512	Version	7				
Created	August 2021	SCQF Level	SCQF 9				
Approved	July 2009	SCQF Points	15				
Amended	August 2021	ECTS Points	7.5				

Aims of Module

To provide students with the ability to analyse and synthesise analogue and digital circuits and systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Design analogue circuits and systems.
- 2 Create and evaluate analogue circuits and systems.
- 3 Analyse and design digital RTL systems.
- 4 Design and implement digital systems using programmable logic.

Indicative Module Content

Differential and instrument amplifier design, analysis and simulation. Design and evaluation of voltage regulator circuits and analysis of its heat dissipation. Active filter design and study of their application in biomedical signal acquisition. Analogue signal acquisition and processing in a Virtual Instrument (VI) environment; basic VI structures for signal capture, analysis and recording. Sequential digital design and implementation using Algorithmic State Machines (ASM); High-level state machines and Register Transfer Level(RTL). The use of programmable logic and high-level description languages in digital system design and implementation.

Module Delivery

This is a lecture-based course supplemented with tutorial sessions, laboratory exercises and student centred learning.

Indicative Student Workload		Part Time
Contact Hours	45	45
Non-Contact Hours		105
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL		150
Actual Placement hours for professional, statutory or regulatory body		

Module Ref: EN3512 v7

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 30% Outcomes Assessed: 2, 4

Description: Design investigation.

Component 2

Type: Examination Weighting: 70% Outcomes Assessed: 1, 3

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module has 2 components and to gain an overall pass a minimum D grade must be achieved in each component. The component weighting is as follows: C1 is worth 30% and C2 is worth 70%.

Coursework:

NS

	Α	В	C	ט	E	г	
Α	Α	Α	В	В	Е	Е	
В	В	В	В	С	Е	Е	
С	В	С	С	С	Е	Е	
D	С	С	D	D	Е	Е	
E	Е	Е	Е	Е	Е	F	
F	F	F	F	F	F	F	

NS

Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module Electronics 2 (EN2510) or the equivalent.

Corequisites for module None.

Precluded Modules None.

Examination:

ADDITIONAL NOTES

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.

Module Ref: EN3512 v7

INDICATIVE BIBLIOGRAPHY

BOTROS, N., 2005. HDL Programming Fundamentals: VHDL and Verilog. Rockland, MA: Charles River Media, Inc.

- FRANCO, S., 2014. Design with Operational Amplifiers and Analog Integrated Circuits. 4th ed. New York, NY: McGraw-Hill.
- 3 ROTH, C. H., 2013. Fundamentals of Logic Design. 7th ed. Nashville, TN: Thomson/Nelson.
- SEDRA, A.S. and SMITH, K.C., 2014. Microelectronic Circuits. 7th ed. New York, NY: Oxford University Press.