	Reference El SCQF S	N3512 SCQF
Module Title Electronics 3	Level	9
	SCQF Points	15
	ECTS Points	7.5
	Created May	/ 2002
Keywords Analogue systems, analogue signal processing, virtual instruments, ASM, programmable logic, HDL	Approved	July 2009
virtual instruments, ASIVI, programmable logic, HDL	Amended A	ugust 2011
	Version No.	2

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Indicative Student Workload		
-		Full	Part
Electronics 2 (EN2510) or the	Contact Hours	Time	Time
equivalent.	Assessment	2	2
Corequisite Modules	Laboratory-based Exercises	12	12
1	Lectures/tutorials	30	30
None.		50	50
Precluded Modules	<i>Directed Study</i> Directed Self		
None.	Study/Coursework Preparation	48	48
Aims of Module	Private Study		
To provide students with the	Private Study	58	58
ability to analyse and synthesise analogue and digital	Mode of Delivery		
circuits and systems.	This is a lecture-base		
Learning Outcomes for Module	supplemented with tutorial sessions, laboratory exercises and student centred learning.		
On completion of this module,	Assessment Plan		

success are expected to be able to:

- 1.Design analogue circuits and systems.
- 2.Construct basic signal acquisition systems using Virtual Instrumentation techniques.
- 3.Design and implement digital systems using programmable logic.
- 4.Interpret, use and create HDL code for digital systems.

Indicative Module Content

Operational amplifier performance characteristics and applications.

Analogue signal processing circuits including filters; signal conditioning.

Analogue signal acquisition and processing in a Virtual Instrument (VI) environment; basic VI structures for signal capture, analysis and recording.

Sequential digital design and implementation using Algorithmic State Machines (ASM); High-level state machines and Register Transfer Language(RTL).

The use of programmable logic

	Learning Outcomes Assessed
Component 1	1,2
Component 2	1,2,3,4

Component 2 is a closed book examination (70% weighting).

Component 1 is a coursework which involves design investigation; the results of which will be presented in a suitable medium (30% weighting).

Indicative Bibliography

- 1.BOTROS, N., 2005. HDL Programming Fundamentals: VHDL and Verilog. Rockland, MA: Charles River Media, Inc.
- 2.FRANCO, S., 2014. Design with Operational Amplifiers and Analog Integrated Circuits. 4th ed. New York, NY: McGraw-Hill.
- 3.ROTH, C. H., 2013. Fundamentals of Logic Design. 7th ed. Nashville, TN: Thomson/Nelson.
- 4.SEDRA, A.S. and SMITH, K.C., 2014. Microelectronic Circuits. 7th ed. New York, NY: Oxford University Press.

Additional Notes

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for and high-level description languages in digital system design and implementation.

students and therefore, those are the editions that may be stocked.