

MODULE DESCRIPTOR

Module Title

Engineering Analysis 1

Reference EN3501 Version 7 Created March 2023 SCQF Level SCQF 9 March 2004 **SCQF** Points Approved 15 Amended **ECTS Points** 7.5 August 2023

Aims of Module

To provide the student with the ability to analyse and interpret the static and dynamic structural behaviour of engineering system components.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Evaluate the natural frequencies and mode shapes of linear and rotational vibrational systems having two,
- 1 three and more degrees of freedom (of vibration isolators and absorbers, rotational machinery, gear shaft systems and shafts).
- 2 Apply dynamic theory and analytical approach to problems related to the vibration of mechanical systems.
- 3 Analyse the behaviour of structural elements such as struts, cylinders, plates and rotating components.
- 4 Apply static load theory for standard cases in stress concentration and fatigue.

Indicative Module Content

Dynamics of engineering systems of two and more degrees of freedom; vibrational analysis of engineering components; basic numerical methods for dynamic analysis; Rayleigh's energy method; the mechanics of engineering materials in common components such as struts, cylinders, plates and rotating components; effects of stress concentrations; fatigue analysis and life predictions of components.

Module Delivery

Full-time students: This module is delivered by a combination of lectures and tutorials. It will be supported by practical examples and activities including computer based laboratory exercises. Part-time students: This module is delivered by a combination of lectures and tutorials online. It will be supported by online evening sessions.

Module Ref: EN3501 v7

Indicative Student Workload	Full Time	Part Time
Contact Hours	46	46
Non-Contact Hours	104	104
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

A minimum D grade must be achieved to pass this module.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	С
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module

Mechanics of Solids (EN2701) and Dynamics (EN2500), or their

equivalent.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 RAO, S.S., 2017. Mechanical Vibrations. 6th ed. Upper Saddle River, NJ: Prentice Hall.
- 2 THOMSON W.T., 2013. Theory of Vibrations with Application. 5th ed. Cheltenham: Nelson Thornes.
- MERIAM, J.L. and KRAIGE, L.G., 2016. Engineering Mechanics -vol. 2 Dynamics. 8th ed. Hoboken, NJ: Wiley.
- 4 HEARN, E.J., 1997. Mechanics of Materials, Vols. 1 & 2. 3rd ed. Oxford: Butterworth-Heinemann.
- 5 CASE, J., CHILVER, L. and ROSS, C.T.F., 1999. Strength of Materials and Structures. 4th ed. London: Arnold.
- BENHAM, P.P., CRAWFORD, R.J. and ARMSTRONG, C.G., 1996. Mechanics of Engineering Materials. 2nd ed. Harlow: Longman.