	Reference EN3501 SCQF Level SCQF 9	
Module Title	SCQF Points15ECTS Points7.5	
Engineering Analysis 1		
	Created May 2002	
Keywords Engineering Dynamics, Mechanics Of Materials.	Approved March 2004	
	Amended July 2013Version No.2	

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module

Mechanics of Solids (EN2701) and Dynamics (EN2500), or their equivalent.

Corequisite Modules

Mode of Delivery

The module is delivered by means of lectures, tutorials and self-guided study and is integrated with applications in the laboratory.

Assessment Plan

None.

Precluded Modules

None.

Aims of Module

To provide the student with the ability to analyse and interpret the static and dynamic structural behaviour of engineering system components.

Learning Outcomes for Module

On completion of this module, students are expected to be able

	Learning Outcomes Assessed
Component 1	2,4
Component 2	1,2,3,4

Component 2 is a closed book examination (70% weighting).

Component 1 consists of a dynamics coursework assessing learning outcome 2 (15% weighting) and a statics coursework assessing learning outcome 4 (15% weighting). In addition to the course

- 1.Determine the natural frequencies and mode shapes of linear and rotational vibrational systems having two, three and more degrees of freedom.
- 2.Apply dynamic theory to the design of vibration isolators and absorbers, rotational machinery, gear shaft systems and shafts.
- 3.Analyse the behaviour of structural elements such as struts, cylinders, plates and rotating components.
- 4.Determine the effects of stress concentrations for standard cases and determine the fatique life characteristics for simple components using a stress-based approach.

Indicative Module Content

Dynamics of engineering systems of two and more degrees of freedom; vibrational analysis of engineering components; basic numerical methods for dynamic analysis; Rayleigh's energy method; the mechanics of engineering materials in common components such as struts, cylinders, plates and rotating components; effects of stress concentrations; fatigue analysis and life predictions of components. documentation requirements, each coursework must be awarded at least 35%.

Indicative Bibliography

- 1.RAO, S.S., 2017. Mechanical Vibrations. 6th ed. Upper Saddle River, NJ: Prentice Hall.
- 2.THOMSON W.T., 2013. Theory of Vibrations with Application.5th ed. Cheltenham: Nelson Thornes.
- MERIAM, J.L. and KRAIGE, L.G., 2016. Engineering Mechanics -vol. 2 Dynamics. 8th ed. Hoboken, NJ: Wiley.
- 4.HEARN, E.J., 1997. Mechanics of Materials, Vols. 1 & 2. 3rd ed. Oxford: Butterworth-Heinemann.
- 5.CASE, J., CHILVER, L. and ROSS, C.T.F., 1999. Strength of Materials and Structures. 4th ed. London: Arnold.
- 6.BENHAM, P.P., CRAWFORD, R.J. and ARMSTRONG, C.G., 1996. Mechanics of Engineering Materials. 2nd ed. Harlow: Longman.

Indicative Student Workload

<i>Contact Hours</i> Assessment Laboratory Lectures	Full Time 3 3 28	Part Time 3 3 28
Tutorials	12	12
<i>Directed Study</i> Coursework preparation Directed Self-Study	24 35	24 35
<i>Private Study</i> Private Study	45	45