

MODULE DESCRIPTOR

Module Title

M	echan	ical E	nain	eerin	a D	esian	2
---	-------	--------	------	-------	-----	-------	---

Reference	EN2705	Version	2
Created	August 2021	SCQF Level	SCQF 8
Approved	March 2021	SCQF Points	30
Amended	August 2021	ECTS Points	15

Aims of Module

This module will develop students' understanding of the formal design process with applications to the design of components and systems and machine elements.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- Analyse beam bending behaviour, linear stress-strain and deflection relationships, torsional loading in shafts and shear stresses in beam bending.
- 2 Analyse complex stresses and strains in two-dimensions and principal strains/stresses.
- 3 Solve design problems on power transmission systems and bearing systems.
- 4 Apply effective integrated design methods to the production of technical solutions to specific problems.
- 5 Design mechanical components and assemblies using knowledge of engineering design processes.

Indicative Module Content

Beam bending theory and the bending equation; properties of plane areas; beam deflection; stress-strain relationships in two-dimensions and Mohr's circle techniques; strain gauge rosettes; relationships between elastic constants; torsion of circular solid and hollow section shafts; shear stresses in beams due to bending; complex loaded beams: lateral and axial loading, SF and thrust; combined bending torsion and axial loading. Thin cylinders and spheres; introduction to strain energy methods in structural analysis. Design process for the solution of engineering systems and components; identifying customer needs and requirements and establishing the engineering characteristics; sources to gather information; creative thinking for concept generation; evaluation methods for concept selection Embodiment design: product architecture; configuration design; best practices for configuration design; parametric design; dimensions and tolerance; human and environmental factors; prototyping and testing. Detail design: final design review, product lifecycle management. Power transmission shafting; couplings; keys; and splines; types of bearings; parameters involved in design and selection of ball and roller bearings; lubrication and seals; assembling and securing bearings on shafts; selection of ball/roller bearing using manufacturer's data/catalogues.

Module Ref: EN2705 v2

Module Delivery

The module is delivered by means of lectures, tutorials and guided self-study and is integrated with applications within the laboratory

Indicative Student Workload	Full Time	Part Time
Contact Hours	100	N/A
Non-Contact Hours	200	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	300	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 50% Outcomes Assessed: 1, 2, 3

Description: A closed book examination.

Component 2

50% Type: Coursework Weighting: Outcomes Assessed: 4, 5

Description: Problem-based assignments including case study.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module component

le has 2 components and to gain an overall pass a minimum D grade must be achieved in each at. The component weighting is as follows: C1 is worth 50% and C2 is worth 50%.							
	Examination:						
	Α	В	С	D	E	F	NS
Α	Α	Α	В	В	Е	E	
В	Α	В	В	С	Е	Е	
С	В	В	С	С	Е	Е	
Coursework: D	В	С	С	D	Е	Е	
E	Е	Е	Е	Е	Е	F	
F	Е	Е	Е	Е	F	F	
NS	Non-submission of work by published deadline or non-attendance for examination						

	Module Requirements				
Prerequisites for Module		Completion of EN1700 or equivalent.			
	Corequisites for module	None.			
	Precluded Modules	None.			

Module Ref: EN2705 v2

INDICATIVE BIBLIOGRAPHY

- ULRICH, K. T. and EPPINGER, S.D., 2016. Product Design and Development. 6th ed. New York: McGraw-Hill.
- 2 DIETER, G, E. and SHHMIDT, L, C; 2009. Engineering Design. 4th ed. New York: McGraw-Hill.
- COLLINS, J A; BUSBY H; STABB G., 2010. Mechanical Design of Machine Elements and Machines. 2nd ed. Wiley
- 4 British Standard BS 8888:2011 Technical product documentation and specification
- 5 Manuals and other literature will be made available as appropriate