	Reference SCQF Level	
Module Title Electrical Power	SCQF Point	s 15
	ECTS Points	s 7.5
	Created De	ecember 2003
Keywords 3-phase systems, DC motors, AC motors, power rectifiers	Approved	March 2004
recurrens	Amended	August 2011
	Version No.	2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module	Power rectification, single-phase and 3-phase diode rectifier circuits,		
Introduction to Electrical Engineering (EN1560)or equivalent	principles of oper	single-phase controlled rectifier, principles of operation, voltage and current relationships, resistive and inductive loads.	
Corequisite Modules			
None.	Indicative Student Workload		
		Full	Part
Precluded Modules	Contact Hours	Time	Time
	Assessment	6	6
None.	Laboratory	6	6
	Lectures	24	24
Aims of Module	Tutorials	18	12
To provide the student with an understanding of electric power circuits and the ability to apply	Directed Study	48	48
fundamental electromechanical	Drivata Study		

energy conversion principles to *Private Study*

drive nrohleme

48

54

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1.Solve simple electric circuit problems involving real and reactive power and power factor in single and 3-phase circuits.
- 2.Describe the physical structure of a single- phase power transformer and use an equivalent circuit model to analyse the performance of the transformer.
- 3.Explain the principles of operation of dc and ac machines and analyse their performance when loaded.
- 4.Explain the basic operation of 1-phase and 3-phase diode rectifiers and 1-phase controlled rectifiers.

Indicative Module Content

1-phase and 3-phase circuits, real and reactive power, principle of three phase generation.

Characteristics of single-phase ideal and practical transformers. Principle of operation, concept of leakage inductance and influence on transformer operation. use of

Mode of Delivery

This is a lecture based course supplemented with tutorial sessions, laboratory work and directed study.

Assessment Plan

	Learning Outcomes Assessed
Component 1	2
Component 2	1,2,3,4

Component 2 is a closed book examination (70% weighting)

Component 1 is coursework which will consist of one laboratory report.(30% weighting)

Indicative Bibliography

- 1.WILDI, T., 2013, Electrical Machines, Drives and Power Systems. 6th ed. London: Prentice Hall.
- 2.BIRD, J.O., 2017. Electrical and Electronic Principles and Technology. 6th ed. Oxford: Newnes.
- 3.O'MALLEY, J., 1990. Schaum's outline of theory and problems of basic circuit analysis. 2nd ed. New York, NY: McGraw-Hill.

equivalent circuit for performance analysis.

DC machines, equivalent circuit, emf and torque equations, motor drive characteristics, motor control.

3-phase induction motor, construction and operating principle, basic drive characteristics.

Synchronous machine principles, construction, simple equivalent circuit, phasor diagram with constant terminal voltage.

- 4.CHAPMAN, S. J., 2011. Electric Machinery Fundamentals. 5th ed. New York, NY: McGraw-Hill.
- 5.MELKEBEEK, J. A., 2018. Electrical Machines and Drives Fundamentals and Advanced Modelling. Switzerland: Springer

Additional Notes

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.