Module Title Electrical Power	Reference EN2560 SCQF LevelSCQF 8 SCQF Points 15 ECTS Points 7.5	
Keywords 3-phase systems, DC motors, AC motors, power	Created December 2003 Approved March 2004	
rectifiers	Amended August 2011	
	Version No. 2	

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module

Introduction to Electrical Engineering (EN1560)or equivalent

Corequisite Modules

Power rectification, single-phase and 3-phase diode rectifier circuits, single-phase controlled rectifier, principles of operation, voltage and current relationships, resistive and inductive loads.

None. Indicative Student Workload

Precluded Modules	Contact Hours	Full Time	Part Time
	Assessment	6	6
None.	Laboratory	6	6
	Lectures	24	24
Aims of Module	Tutorials	18	12
To provide the student with an understanding of electric power	Directed Study	48	48
circuits and the ability to apply fundamental electromechanical	Duinata Stude		
energy conversion principles to	Private Study	48	54

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1. Solve simple electric circuit problems involving real and reactive power and power factor in single and 3-phase circuits.
- 2.Describe the physical structure of a single- phase power transformer and use an equivalent circuit model to analyse the performance of the transformer.
- 3.Explain the principles of operation of dc and ac machines and analyse their performance when loaded.
- 4.Explain the basic operation of 1-phase and 3-phase diode rectifiers and 1-phase controlled rectifiers.

Indicative Module Content

1-phase and 3-phase circuits, real and reactive power, principle of three phase generation.

Characteristics of single-phase ideal and practical transformers. Principle of operation, concept of leakage inductance and influence on transformer operation, use of

Mode of Delivery

This is a lecture based course supplemented with tutorial sessions, laboratory work and directed study.

Assessment Plan

	Learning Outcomes Assessed
Component 1	2
Component 2	1,2,3,4

Component 2 is a closed book examination (70% weighting)

Component 1 is coursework which will consist of one laboratory report.(30% weighting)

Indicative Bibliography

- 1.WILDI, T., 2013, Electrical Machines, Drives and Power Systems. 6th ed. London: Prentice Hall.
- 2.BIRD, J.O., 2017. Electrical and Electronic Principles and Technology. 6th ed. Oxford: Newnes.
- 3.O'MALLEY, J., 1990. Schaum's outline of theory and problems of basic circuit analysis. 2nd ed. New York, NY: McGraw-Hill.

equivalent circuit for performance analysis.

DC machines, equivalent circuit, emf and torque equations, motor drive characteristics, motor control.

3-phase induction motor, construction and operating principle, basic drive characteristics.

Synchronous machine principles, construction, simple equivalent circuit, phasor diagram with constant terminal voltage.

- 4.CHAPMAN, S. J., 2011. Electric Machinery Fundamentals. 5th ed. New York, NY: McGraw-Hill.
- 5.MELKEBEEK, J. A., 2018. Electrical Machines and Drives Fundamentals and Advanced Modelling. Switzerland: Springer

Additional Notes

An Indicative Bibliography will normally reference the latest edition of a text. In some cases, older editions are equally useful for students and therefore, those are the editions that may be stocked.