

This Version is No Longer Current

The latest version of this module is available <u>here</u>

MODULE DESCRIPTOR					
Module Title					
Microprocessor Based Systems					
Reference	EN2542	Version	1		
Created	March 2021	SCQF Level	SCQF 8		
Approved	June 2022	SCQF Points	15		
Amended		ECTS Points	7.5		

Aims of Module

To provide the student with the ability to describe the operation of microprocessor-based systems and develop, test and document programs for the microcontrollers.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Describe the structure of a microprocessor based system and explain its principles of operation.
- 2 Apply knowledge of hardware and software in the use of a microprocessor development system.
- Write software for and construct simple interface-based microcontroller systems and observe, record and interpret their operation.
- Design, code, test and document microcontroller programs in a high-level programming language to prescribed standards and specifications.

Indicative Module Content

Microprocessor: operation of the CPU, registers, ALU, control unit, address, data and control buses, memory, input/output ports, system clock and timing, the fetch-execute cycle and memory maps. Machine instructions: opcodes, operands and addressing modes, data transfer, arithmetic and logical operations, control structures, flags, subroutines. Microcontroller software: edit-compile-execute cycle, the syntax of a high-level language, input, process, output program operation, selection and repetition structures. Introduction to microcontroller interfacing: I/O ports types and their use.

Module Delivery

This module is delivered using a structured programme of lectures, tutorials and laboratory exercises supplemented by directed reading and student-centred learning.

Module Ref: EN2542 v1

Indicative Student Workload	Full Time	Part Time
Contact Hours	36	36
Non-Contact Hours	114	114
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Weighting: 2, 3 Type: Coursework 50% Outcomes Assessed:

Description: Logbook of practical activities and mini-project.

Component 2

Type: Examination Weighting: 50% Outcomes Assessed: 1, 4

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module has 2 components and to gain an overall pass a minimum D grade must be achieved in each

component. The component weighting is as follows: C1 is worth 50% and C2 is worth 50%.								
		Coursework:						
		Α	В	С	D	E	F	NS
	Α	Α	Α	В	В	Е	Е	
	В	Α	В	В	С	Е	Е	
	С	В	В	С	С	Е	Е	
Examination:	D	В	С	С	D	Е	Е	
	Ε	Е	Е	Е	Е	Е	F	
	F	Е	Е	Е	Е	F	F	
	NS	Non-submission of work by published deadline or non-attendance for examination						

Module Requirements	
Prerequisites for Module	EN1541 or Equivalent
Corequisites for module	None.
Precluded Modules	None.

Module Ref: EN2542 v1

INDICATIVE BIBLIOGRAPHY

Richard J. Smythe, 2021, Arduino in Science: Collecting, Displaying, and Manipulating Sensor Data, Apress, Berkeley, CA.

- 2 Jack Purdum, 2015, Beginning C for Arduino, Apress, Berkeley, CA.
- Bob Dukish, 2018, Coding the Arduino: Building Fun Programs, Games, and Electronic Projects, Apress, Berkeley, CA.