

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR

Module Title

Computer Engineering			
Reference	EN2541	Version	3
Created	January 2020	SCQF Level	SCQF 8
Approved	September 2017	SCQF Points	15
Amended	May 2020	ECTS Points	7.5

Aims of Module

To provide the student with the ability to describe the operation of microcomputer systems and develop, test and document structured software in a high-level language.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Describe the structure of a microcomputer system and explain its principles of operation.
- 2 Apply knowledge of hardware software in the use of a microprocessor development system.
- 3 Demonstrate the ability to use a development system for a high level programming language and create programs using it.
- ⁴ Design, code, test and document modular structured programs in a high-level programming language to prescribed standards and specifications.
- 5 Explain the characteristics of a typical programming language, algorithms and data structures and the process of software development.

Indicative Module Content

Microcomputer systems: operation of the CPU, registers, ALU, control unit, address, data and control buses, memory, input/output ports, system clock and timing, the fetch-execute cycle and memory maps. Machine instructions: opcodes, operands and addressing modes, data transfer, arithmetic and logical operations, control structures, flags, subroutines. Software development: algorithms, source and object code, compilers, the edit-compile-execute cycle, software design, testing, standards and documentation. Syntax of a high-level language: constants and variables, data types, pointers, arrays and data structures; program expressions and statements, input and output, selection and repetition control structures; modular programming, library and user functions, parameter passing, macros.

Module Delivery

This module is delivered using a structured programme of lectures, tutorials and laboratory exercises supplemented by directed reading and student-centred learning.

	Module Ref:	EN2542	1 v3
Indicative Student Workload		Full Time	Part Time
Contact Hours		60	36
Non-Contact Hours		90	114
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	150
Actual Placement hours for professional, statutory or regulatory body			

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1					
Туре:	Coursework	Weighting:	25%	Outcomes Assessed:	2, 3
Description:	Logbook of practical activities.				
Component 2					
Туре:	Examination	Weighting:	25%	Outcomes Assessed:	4
Description:	Open book programming examination.				
Component 3					
Туре:	Examination	Weighting:	50%	Outcomes Assessed:	1, 5
Description:	Closed book examination.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module grade is calculated as the weighted average of the component marks. To pass the module, you must achieve a 40% weighted average mark and need to achieve at least 35% in all components.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	70% - 100%
В	60% - 69%
С	50% - 59%
D	40% - 49%
E	35% - 39%
F	0% - 34%
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	None.
Corequisites for module	None.
Precluded Modules	None.

Module Ref: EN2541 v3

INDICATIVE BIBLIOGRAPHY

- 1 WEERT, P.V. and GREGOIRE, M., 2016. C++ standard library quick reference. Berkeley, CA: Apress.
- 2 HORTON, I., 2014. Beginning C++. Berkeley, CA: Apress.
- 3 SUTHERLAND, B., 2015. C++ recipes: a problem-solution approach. Berkeley, CA: Apress.