

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR

Module Title

Dynamics			
Reference	EN2500	Version	5
Created	August 2021	SCQF Level	SCQF 8
Approved	March 2004	SCQF Points	15
Amended	August 2021	ECTS Points	7.5

Aims of Module

To provide the student with the ability to understand, apply and discuss the modelling concepts and theories associated with free and forced vibration of 1-DOF systems and the concepts and theories associated with the dynamics of planar mechanisms, rotating machines, rigid-body and impulsive systems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- ¹ Derive and solve problems involving free and forced vibration of 1-DOF systems including the concept of vibration isolation and transmissibility.
- 2 Apply the concept of dynamic equivalence to model vibrating systems.
- 3 Describe practical balancing tecchniques and analyse out-of-balance forces associated with rotating machines.
- 4 Analyse the dynamics of planar mechanisms.
- 5 Investigate experimentally the effects of spring-mass-damper on a 1-DOF vibration system.

Indicative Module Content

Kinematics of planar mechanisms with revolute (pin) and prismatic (sliding joint); forces and torques arising in planar mechanisms owing to inertia forces and moments associated with acceleration of links. Free vibration of undamped 1-DOF systems. Dynamic equivalence of engineering systems. Free and forced vibration of damped 1-DOF systems. Transient response to simple inputs. Steady-state sinusoidal response. Vibration isolation and forces transmitted to supports. Impulse force, impact and momentum. Kinetic and potential energy. Balancing of rigid rotors. Single plane and two-plane balancing.

Module Delivery

This module is lecture based with tutorials, directed self-study, laboratory work and private study.

	Module Ref:	EN2500) v5
Indicative Student Workload		Full Time	Part Time
Contact Hours		50	50
Non-Contact Hours		100	100
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	150
Actual Placement hours for professional, statutory or regulatory body			

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1					
Туре:	Coursework	Weighting:	50%	Outcomes Assessed:	5
Description:	Coursework.				
Component 2					
Туре:	Examination	Weighting:	50%	Outcomes Assessed:	1, 2, 3, 4
Description:	A closed book examination.				

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module has 2 components and to gain an overall pass a minimum D grade must be achieved in each component. The component weighting is as follows: C1 is worth 50% and C2 is worth 50%.

		Examination:						
		Α	В	С	D	Е	F	NS
	Α	А	А	В	В	Е	Е	
	В	А	В	В	С	Е	Е	
	С	В	В	С	С	Е	Е	
Coursework:	D	В	С	С	D	Е	Е	
	E	Е	Е	Е	Е	Е	F	
	F	Е	Е	Е	Е	F	F	
	NS	Non-submission of work by published deadline or non-attendance for examination						

Statics & Dynamics (EN1700) or its equivalent.
None.
None.

INDICATIVE BIBLIOGRAPHY

1 MERIAM, J.L. AND KRAIGE L.G., 2016. Engineering Mechanics: Dynamics. 8th ed. Hoboken, NJ: Wiley.

- 2 RAO, S.S., 2017. Mechanical Vibrations. 6th ed. Upper Saddle River, NJ: Prentice Hall.
- 3 THOMSON, W.T., 2013. The Theory of Vibration with Applications. 5th ed. Cheltenham: Nelson Thornes.