	Reference SCQF	EN2500 SCQF
Module Title	Level	8
Dynamics	SCQF Poin	nts 15
	ECTS Poin	its 7.5
Keywords Plane Mechanism, Rotating Machine Balance, One Degree-of-Freedom (1-DOF) Vibration, Damping, Free and Forced Vibration, Transmissibility,	Created De	cember 2003 March 2004
Vibration Isolation, Impulse, Momentum, Energy	Amended	August 2011
	Version No) . 2

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module	Indicative Student Workload		
-		Full	Part
Statics & Dynamics (EN1700)	Contact Hours	Time	Time
or its equivalent.	Assessment	3	3
Corequisite Modules	Laboratory	6	6
	Lectures	28	28
None.	Tutorials	12	12
Precluded Modules	Directed Study		
	Coursework	16	16
None.	Preparation	10	10
	Directed	10	10
Aims of Module	Self-Study	10	10
To provide the student with the	Private Study		
ability to understand, apply and	Private Study	75	75

discuss the modelling concepts

and forced vibration of 1-DOF

systems and the concepts and

theories associated with the

and theories associated with free

dynamics of planar mechanisms,

Mode of Delivery

This module is lecture based with tutorials, directed self-study, laboratory work and private study. and impulsive systems.

Assessment Plan

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1. Analyse the dynamics of planar mechanisms.
- 2.Evaluate practical balancing techniques and analyse out-of-balance forces associated with rotating machines.
- 3.Investigate and solve problems involving free vibration of 1-DOF systems.
- 4. Analyse forced vibration of 1-DOF systems including the concept of vibration isolation and transmissibility.
- 5.Apply the concept of dynamic equivalence to model vibrating systems.

Indicative Module Content

Kinematics of planar mechanisms with revolute (pin) and prismatic (sliding joint); forces and torques arising in planar mechanisms owing to inertia forces and moments associated with acceleration of links. Free vibration of undamped 1-DOF systems. Dynamic equivalence of engineering systems. Free and

	Learning Outcomes Assessed
Component 1	1,3,5
Component 2	1,2,3,4,5

Component 2 is a closed book examination. (50% weighting)

Component 1 involves two coursework/laboratory assessments one covering LO1 and the other covering LO3 and LO5. (50% weighting)

Indicative Bibliography

- 1.MERIAM, J.L. AND KRAIGE L.G., 2016. Engineering Mechanics: Dynamics. 8th ed. Hoboken, NJ: Wiley.
- 2.RAO, S.S., 2017. Mechanical Vibrations. 6th ed. Upper Saddle River, NJ: Prentice Hall.
- 3.THOMSON, W.T., 2013. The Theory of Vibration with Applications. 5th ed. Cheltenham: Nelson Thornes.

forced vibration of damped 1-DOF systems. Transient response to simple inputs. Steady-state sinusoidal response. Vibration isolation and forces transmitted to supports. Impulse force, impact and momentum. Kinetic and potential energy. Balancing of rigid rotors. Single plane and two-plane balancing.