

MODULE DESCRIPTORModule TitleMathematics 1AReferenceEN1911Version4CreatedMarch 2023SCQF LevelSCQF 7ApprovedJune 2002SCQF Points15

ECTS Points

7.5

Aims of Module

Amended

To provide the student with the ability to apply introductory level mathematics to engineering problems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

August 2023

- 1 Carry out manipulation of trigonometric equations by use of formulae.
- 2 Apply vectors to problems in engineering mathematics.
- 3 Carry out basic operations on complex numbers including their powers and roots.
- 4 Employ standard techniques of differentiation and integration.

Indicative Module Content

The syllabus will include: Trigonometry: Trigonometric identities and their application in solving trigonometric equations. The combination of simple waveforms using standard trigonometric formulae. Vectors: Simple vector algebra. The scalar and vector products. Application to engineering problems. Complex numbers: The arithmetic of complex numbers. Rectangular and polar forms. The Argand diagram. De Moivre's theorem and complex roots. Differential Calculus: Differentiation of elementary functions. The rules of differentiation: chain rule, product rule, quotient rule. Application to problems in engineering. Integral Calculus: Integration of elementary functions. Partial fractions. Application to problems in engineering.

Module Delivery

The module is delivered using a series of lectures with associated tutorials.

Module Ref: EN1911 v4

Indicative Student Workload	Full Time	Part Time
Contact Hours	40	N/A
Non-Contact Hours	110	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Examination Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Component 1 comprises 100% of the module grade. To pass the module, a grade D is required.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A
В	В
С	С
D	D
E	E
F	F
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module None.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 STROUD, K.A. and BOOTH, D.J., 2020. Engineering Mathematics. 8th ed. Red Globe Press.
- 2 SINGH, K. 2011, Engineering Mathematics Through Applications, 2nd ed., Palgrave
- 3 JAMES, G. and DYKE, P. 2020 Modern Engineering Mathematics, 6th ed., Palgrave