

This Version is No Longer Current

The latest version of this module is available <u>here</u>

MODULE DESCRIPTOR Module Title Thermofluids 1 Reference EN1702 Version 5 Created July 2017 SCQF Level SCQF 7 Approved May 2006 **SCQF** Points 15 Amended **ECTS Points** September 2017 7.5

Aims of Module

To enable the student to understand the basic concepts and theories of Thermodynamic Properties and Fluid Statics.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Identify key thermodynamic properties of gases and vapours.
- 2 Explain thermodynamic principles to analyse simple systems and processes.
- 3 Explain key fluid properties and methods of measuring pressure.
- 4 Analyse problems involving hydrostatics.
- 5 Perform experiments on thermofluids principles and accurately record, analyse and report on these.

Indicative Module Content

Units and dimensions. Thermodynamic systems, properties of gases and vapours, processes, energy, heat and work transfers, non-flow energy equation. Fluid properties, Hydrostatics, Pressure distribution in fluids at rest, Measurement of pressure, Forces on plane and curved surfaces, Buoyancy and Stability.

Module Delivery

The module is delivered by means of lectures, tutorials and guided self-study and is integrated with applications within the laboratory.

Indicative Student Workload	Full Time	Part Time
Contact Hours	50	50
Non-Contact Hours	100	100
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	150
Actual Placement hours for professional, statutory or regulatory body		

Module Ref: EN1702 v5

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 30% Outcomes Assessed: 5

Description: Coursework which involves two laboratory based assignments.

Component 2

Type: Examination Weighting: 70% Outcomes Assessed: 1, 2, 3, 4

Description: Closed book examination.

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

In order to pass the module students must achieve at least a grade D overall AND a minimum of 35% in the examination and coursework.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	70% and above
В	60-69%
С	50-59%
D	40-49%
E	35-39%
F	34% and below
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module None in addition to the course entry requirements.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 CLIFFORD, MICHAEL, et al, 2009. An Introduction to Mechanical Engineering Part 1. Hodder Education.
- 2 Spurk, Joseph H et al; 2020. Fluid Mechanics. Cham: Springer
- 3 Bejan, Adrian, 2016. Advanced Engineering Thermodynamics. John Wiley&Sons, Incorporated