	Reference	EN1700
	SCQF	SCQF
Module Title Statics and Dynamics	Level	7
	SCQF Poir	nts 15
	ECTS Poir	nts 7.5
Keywords Free-body diagrams, Equilibrium, Stress and Strain.	Created December	
	Cleated	2003
	Approved	March
Kinematics, Kinetics, Friction, Work, Power &		2004
Energy.	Amended	August 2011
	Version No	

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module Rectilinear and curved path motion of particles including non-constant None in addition to the course acceleration case. Newton's Laws applied to rigid body kinetics of entry requirements. linear and circular motion systems including the effect of friction. Mass **Corequisite Modules** moment of Inertia. Impulse and None. momentum. **Indicative Student Workload Precluded Modules** Full Part None. Contact Hours Time Time 3 3 Assessment **Aims of Module** 24 24 Lecture Supervised 6 6 To enable the student to Practical Work understand the basic concepts **Tutorials** 16 16 and theories of applied mechanics. Directed Study Group and 20 20 **Learning Outcomes for** Indiviual work Module

Private Study

on completion of this module, students are expected to be able to:

- 1.Investigate the actions of forces and moments and the concept of equilibrium; identify and explain tensile and compressive loading and the associated linear stress-strain relationship.
- 2.Analyse forces and moments on beams and pin-jointed structures.
- 3. Analyse the kinematics of simple translation and rotational systems, kinetics of rigid bodies and apply the concepts of work, power and energy.
- 4.Investigate friction, mass moment of inertia and the dynamics of simple systems.

Indicative Module Content

Forces, moments and equilibrium. Load analysis of plane, pinned frames (trusses). Shear forces and bending moments in beams. Simple tensile, compressive and linear-elastic material behaviour. Private study 81 81

Mode of Delivery

The module is delivered by means of lectures, tutorials and guided self-study and is integrated with applications within the laboratory.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,4
Component 2	1,2,3,4

Component 2 invloves an in-class assessment (20% weighting) and a closed book exmination(30% weighting)

Component 1 involves two laboratory based courseworks. One covers statics and the other covers dynamics. (50% weighting)

Indicative Bibliography

- 1.HEARN, E.J., 1997. Mechanics of Materials: Volume 1. 3rd ed. Oxford: Butterworth-Heinemann.
- 2.MERIAM, J.L. and KRAIGE, L.G., 2016. Engineering Mechanics (Statics and Dynamics). 8th ed. New York: Wiley.

3.CLIFFORD, M., 2009. Introduction to Mechanical Engineering Part 1. London: Hodder Education.