

#### MODULE DESCRIPTOR **Module Title** Advanced Data Science Reference CMM536 Version 7 Created June 2022 SCQF Level SCQF 11 April 2015 **SCQF** Points Approved 15 Amended **ECTS Points** 7.5 July 2022

#### **Aims of Module**

To introduce students to complex datasets, showing how processing and analysis techniques can be adapted to address the challenges posed by the nature of such data in real-life applications.

# **Learning Outcomes for Module**

On completion of this module, students are expected to be able to:

- 1 Critically appraise the challenges posed by the management and processing of complex datasets and data inputs.
- Discuss, compare and contrast advanced techniques and algorithms for working with complex datasets and data types using data science.
- 3 Critically evaluate and select state-of-the-art data science techniques and algorithms for selected/given applications involving complex data.
- 4 Apply advanced techniques and algorithms and critically analyse and evaluate the results.

#### **Indicative Module Content**

Introduction to Python (including use of IDEs, Environments and modules such as Numpy, Pandas, Keras, Tensorflow/TensorBoard). Complex Data: Image data (Pixel grid, colour channels, feature extraction); Streaming data (concept drift, streaming rate, class imbalance). Data pre-processing. Classification: Convolutional Neural Networks for Images; Streaming Data Classification.

## **Module Delivery**

This is a lecture-based module with practical exercises that will feature a number of advanced data mining techniques as applied to complex datasets high-speed data streams. Online materials and online sessions will be used to support online learning students.

Module Ref: CMM536 v7

| Indicative Student Workload                                           | Full Time | Part Time |
|-----------------------------------------------------------------------|-----------|-----------|
| Contact Hours                                                         | 30        | 30        |
| Non-Contact Hours                                                     | 120       | 120       |
| Placement/Work-Based Learning Experience [Notional] Hours             | N/A       | N/A       |
| TOTAL                                                                 | 150       | 150       |
| Actual Placement hours for professional, statutory or regulatory body |           |           |

## **ASSESSMENT PLAN**

If a major/minor model is used and box is ticked, % weightings below are indicative only.

## **Component 1**

Type: Coursework Weighting: 100% Outcomes Assessed: 1, 2, 3, 4

Description: A coursework assessing all learning outcomes.

# **MODULE PERFORMANCE DESCRIPTOR**

# **Explanatory Text**

The calculation of the overall grade for this module is based on 100% weighting of C1. An overall minimum grade of D is required to pass this module.

| Module Grade | Minimum Requirements to achieve Module Grade:                                  |  |
|--------------|--------------------------------------------------------------------------------|--|
| Α            | The student needs to achieve an A in C1.                                       |  |
| В            | The student needs to achieve a B in C1.                                        |  |
| С            | The student needs to achieve a C in C1.                                        |  |
| D            | The student needs to achieve a D in C1.                                        |  |
| E            | The student needs to achieve an E in C1.                                       |  |
| F            | The student needs to achieve an F in C1.                                       |  |
| NS           | Non-submission of work by published deadline or non-attendance for examination |  |

| Module Requirements      |       |
|--------------------------|-------|
| Prerequisites for Module | None. |
| Corequisites for module  | None. |
| Precluded Modules        | None. |

Module Ref: CMM536 v7

### INDICATIVE BIBLIOGRAPHY

- 1 AGGARWAL, C. C. (2007). Data streams: models and algorithms (Vol. 31). Springer.
- 2 GAMA, J. and GABER, M. M. (2007). Learning from data streams. Springer-Verlag Berlin Heidelberg.
- 3 Python, Toby Donaldson, Peachpit Press (2013)
- 4 Python Essentials. Steven F. Lott, Packt Publishing Ltd(2015)
- 5 Think Python: How to Think Like a Computer Scientist. Allen Downey, O'Reilly Media, Inc. (2012)
- 6 Fluent Python. Luciano Ramalho. O'Reilly Media, Inc. (2015)
- Python Cookbook: Recipes for Mastering Python 3. David Beazley, Brian K. Jones, O'Reilly Media, Inc. (2013)
- 8 Deep Learning with Python. Francois Chollet. Manning. (2018)