

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR

Module Title

Big Data Analytics And Vi	sualisation		
Reference	CMM534	Version	4
Created	April 2017	SCQF Level	SCQF 11
Approved	April 2015	SCQF Points	15
Amended	August 2017	ECTS Points	7.5

Aims of Module

To introduce students to the use of state-of-the-art Big Data analytics and visualisation techniques and tools, including NoSQL data stores, and modern parallel computation methodologies.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Compare and contrast available NoSQL data stores.
- 2 Analyse, design, implement and evaluate a NoSQL data store for a given problem.
- 3 Design, implement and evaluate scalable solutions using the parallel computation framework.
- 4 Mine Big Data to extract actionable knowledge.
- 5 Compare, contrast, and use visualisation techniques for data and for analytics outputs.

Indicative Module Content

1. NoSQL data stores (key-value, document, and graph), e.g. MongoDB 2. Case studies of NoSQL data stores with hands-on experience 3. Schema migration in NoSQL data stores (key-value, document, and graph) 4. Modern parallel data processing techniques, e.g. MapReduce/Hadoop. 5. Case studies on using parallel data processing for analysis and mining of Big Data 6. Visualisation techniques for Big Data

Module Delivery

This is a lecture based module, supplemented with practical sessions, where a number of Big Data technologies will be used to teach students how to store, analyse and visualise Big Data. Online materials and online sessions will be used to support DL students.

	Module Ref:	CMM534	1 v4
Indicative Student Workload		Full Time	Part Time
Contact Hours		33	33
Non-Contact Hours		117	117
Placement/Work-Based Learning Experience [Notional] Hours		N/A	N/A
TOTAL		150	150
Actual Placement hours for professional, statutory or regulatory boo	ly		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Туре:	Examination	Weighting:	100%	Outcomes Assessed:	1, 2, 3, 4, 5
Description:	Big data analytics	and visualisation	project.		

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

Data analytics and visualisation project assessing the module?s learning outcomes.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	The student needs to achieve an A in C1
В	The student needs to achieve a B in C1
С	The student needs to achieve a C in C1
D	The student needs to achieve a D in C1
E	The student needs to achieve an E in C1
F	The student needs to achieve an F in C1
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements	
Prerequisites for Module	None.
Corequisites for module	None.
Precluded Modules	None.

INDICATIVE BIBLIOGRAPHY

- ¹ GULLER, M., 2015. Big data analytics with Spark : a practitioner's guide to using Spark for large-scale data processing, machine learning, and graph analytics, and high-velocity data stream processing. Apress.
- 2 LESKOVEC, J., ANAND, R. and ULLMAN, J.D., 2019. Mining of massive datasets. (3rd Edition) Cambridge University Press.
- ³ ZIKOPOULOS, P. and EATON, C., 2011. Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media.
- 4 CHIVUKULA, A.S. et al, 2019. Big Data Analytics. Springer