

MODULE DESCRIPTOR **Module Title** Optimisation For Decision Support Reference CM4128 Version 1 Created September 2021 SCQF Level SCQF 10 August 2022 **SCQF** Points Approved 15 Amended **ECTS Points** 7.5

Aims of Module

To provide students with necessary practical skills and underlying knowledge to critically appraise and develop decision-support systems. To enable students to compare and contrast suitable optimization techniques for decision-support and select the most appropriate method for a given business context.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Use a suitable framework to model business data and apply statistical analysis techniques.
- ldentify, describe and compare different types of decision-support systems, their properties and appropriate business contexts for their use.
- Theoretically discuss and practically apply optimization techniques to develop solutions for small to large-scale problems.
- 4 Critically evaluate and visualize the output of optimization techniques and analyse this output in relation to relevant outcomes within a given business context.

Indicative Module Content

Basic data modelling: identification and selection of features from business data, evaluation and selection of methodologies. Data analysis techniques: Monte Carlo analysis, statistical techniques, forecasting, nearest neighbour retrieval. Context of decision-support systems: typical use-cases and data, evaluating decision-support systems and their outcomes. Developing decision-support systems: types of decision-support system, development strategies, alternatives. Optimization techniques: local optimization, global optimization, gradient-based techniques, evolutionary algorithms. Commercial modelling platforms, including GAMS.

Module Ref: CM4128 v1

Module Delivery

This module uses the following delivery modes: ? Guided study (lectures, tutorials and other learning materials delivered through VLE + bibliography) ? Practical lab exercises ? Personal study Key concepts are introduced and illustrated through lectures (physical and virtual). The understanding of students is tested and further enhanced through interactive lab tutorials.

Indicative Student Workload	Full Time	Part Time
Contact Hours	36	N/A
Non-Contact Hours	114	N/A
Placement/Work-Based Learning Experience [Notional] Hours	N/A	N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework

Weighting:

100% Outcomes Assessed:

1, 2, 3, 4

Description:

Individual portfolio assessment comprised of a theoretical use-case analysis and practical

programming exercise

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

The module assessment pattern consists on one component so the grade in the component is the grade for the module as a whole.

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A in Component 1
В	B in Component 1
С	C in Component 1
D	D in Component 1
E	E in Component 1
F	F in Component 1
NS	Non-submission of work by published deadline or non-attendance for examination

Module RequirementsPrerequisites for ModuleNone.Corequisites for moduleNone.

Precluded Modules None.

Module Ref: CM4128 v1

INDICATIVE BIBLIOGRAPHY

- 1 BURSTEIN, F., HOLSAPPLE, C. W., 2008. Handbook on Decision Support Systems. Springer
- 2 EMC EDUCATION SERVICES, 2015. Data Science and Big Data Analytics: Discovering, Analysing, Visualizing and Presenting Data
- 3 KOCHENDERFER, M. J., and WHEELER, T. A., 2019. Algorithms for optimization. MIT Press.
- MOHAMMED, J.Z. and WAGNER, M., 2014. Data mining and analysis: fundamental concepts and algorithms. Cambridge: Cambridge University Press.
- MORENO-JIM?NEZ, J. M. et al., eds. 2020. Decision Support Systems X: Cognitive Decision Support Systems and Technologies: 6th International Conference on Decision Support System Technology.
- 6 SIEGEL, E. 2016. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. John Wiley & Sons.