Module Title Mathematics 3A	Reference CM3900
	SCQF Level
	SCQF Points 15
	ECTS Points 7.5
Keywords	Created May 2002
Eigenvalues, Partial Differential Equations, Vector	ApprovedJune 2002
Calculus, Computer Packages	Amended October
	Amended 2012
	Version No. 3

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module

CM2901 Mathematics 2A.

Corequisite Modules

None.

Precluded Modules

None.

Aims of Module

To provide the student with the ability to apply advanced
mathematics techniques to applied problems in Science and Technology.

Learning Outcomes for Module

On completion of this module, students are expected to be able

Indicative Student Workload

Contact Hours
Lectures
Full Time

Tutorials 20
Computing
LaboratoriesAssessments8
Directed Study
Directed Study 20
Private Study Private Study 74
Mode of Delivery

The course is lecture and tutorial based with computing laboratories in which mathematics packages will be used to solve extended problems which apply the mathematics techniques to practical problems.
1.Calculate matrix eigenvalues and eigenvectors by hand or by computer as appropriate and apply eigen-methods to the solution of problems in Science and Technology.
2.Derive and apply solutions of partial differential equations by separation of variables and Fourier series.
3.Derive and apply solutions of partial differential equations by finite difference methods.
4.Perform calculations using the vector differential operators grad, div and curl and apply these to problems in Science and Technology.
5.Use computational packages in support of the other learning outcomes.

Indicative Module Content

Eigenvalues and eigenvectors of matrices and their relation to second order systems including degenerate systems.
Development and solution differential equations using eigen methods. Partial differential equations using separation of variables and Fourier series to include heat flow in one dimension, one-dimensional vibration and Laplaces equation. Div, grad and curl and their identities.
Application of the vector

Assessment Plan

	Learning Outcomes Assessed
Component 1	$1,2,3,4$
Component 2	5

Component 2 - Coursework

Component 1 - This is a closed book Examination

Indicative Bibliography

1.KREYSZIG, A., 2011. Advanced Engineering Mathematics. 10th ed. J Wiley.
operators to problems in Science
and Technology.

