
Module Title

Concurrent Programming

Keywords

Threads, Synchronisation, Semaphores, Monitors

Reference CM3033

SCQF LevelSCQF 9

SCQF Points 15

ECTS Points 7.5

Created May 2002

ApprovedApril 2005

Amended
September

2012

Version No. 5

This Version is No Longer Current
The latest version of this module is available here

Prerequisites for Module

CM2015 Object Oriented

Software Design or equivalent.

Corequisite Modules

None.

Precluded Modules

None.

Aims of Module

To provide the student with the

ability to evaluate concurrent

programming and to design

appropriate solutions within a

concurrent programme

environment.

Learning Outcomes for Module

On completion of this module,

students are expected to be able

Indicative Student Workload

Contact Hours Full Time

Assessment 10

Laboratories 12

Lectures 20

Tutorials 12

Directed Study

Coursework

Preperation
20

Directed Reading 24

Private Study

Private Study 52

Mode of Delivery

Key concepts are introduced and

illustrated through the medium of

lectures. However the main

emphasis of the course is focused

on the laboratory sessions in which

the student will progress through a

series of graded exercises which

are intended to test the student's

file:/E:/UploadFolders/modulepdfs/html/act_initialise.cfm?Descriptor=CM3033&Revision=6

to:

1.Analyse user requirements and

develop a concurrent solution

as either a single

multi-threaded application or a

collection of co-operating

distributed applications.

2.Identify concurrent interactions

within the overall design and

select (an appropriate

combination of)

synchronisation mechanisms to

handle these interactions.

3.Apply analytic rigour to verify

correctness of the overall

design approach.

4.Implement the design in a

concurrent programming

environment, making a critical

selection of the facilities that

provide support for

multi-threading, distribution

and synchronisation.

Indicative Module Content

Key concepts of multi-threaded

programming including: thread

attributes, thread life history,

scheduling. Indivisible

operations, race conditions,

safety and liveness, formal

approaches to verifying

correctness of a concurrent

design. Synchronisation

primitives based on use of: -

shared variables, test-and-set

primitives, semaphores,

monitors. Generic concurrent

programming problems and their

understanding of the lecture

content and to develop proficiency

in the practical application of object

oriented programming skills.

Assessment Plan

Learning Outcomes

Assessed

Component

1
2,3

Component

2
1,2,4

Component 2 - Coursework

Component 1 - This is a closed

book examination.

Indicative Bibliography

1.LIU Henry H., 2015. Java

Concurrent Programming: A

Quantitative Approach.

CreateSpace Independent

Publishing.

2.GONZALEZ Javier F., 2016.

Mastering Concurrency

Programming with Java 8. Packt

Publishing.

3.FREISEN Jeff, 2015. Java

Threads and the Concurrency

Utilities. Apress.

solution: - mutual exclusion,

resource allocation, event

ordering, inter-thread

communication.

