	Reference CM2901
Module Title	SCQF Level SCQF 8
Mathematics 2	SCQF Points 15
	ECTS Points 7.5
Keywords	Created May 2002
Ordinary Differential Equations, Laplace Transforms, Fourier Series, Partial Differentiation,	Approved June 2002
Eigenvalues and Eigenvectors	Amended October 2012
	Version No. 4

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Laplace Transform	as: Definition of and its inverse.
Mathematics 1B (CM1902) or equivalent.	Use of tables to cal transforms of elem	lculate Laplace entary functions.
Corequisite Modules	The solution of orce equations. The step impulse function.	linary differential o function and
None.		
Precluded Modules	Multivariable calculus: Partial differentiation. Application to problems in Science and	
None.	Engineering.	
Aims of Module	Fourier Series: Decomposition of waveforms. Fourier series of simple	
To provide the student with the	functions The use of symmetry	
ability to apply advanced level mathematics to engineering	Amplitude spectra.	
problems.	Indicative Studen	t Workload
Learning Outcomes for Module	Contact Hours	Full Time
	Lectures	24
On completion of this module,	Tutorials	24

Computer Labs

10

On completion of this module, students are expected to be able

- 1.Solve first and second order ordinary differential equations by algebraic methods and apply Laplace transform methods to problems involving simple linear systems.
- 2.Carry out partial differentiation and apply it to problems in Science and Engineering.
- 3.Apply Fourier series techniques to periodic signals.
- 4.Calculate eigenvalues and eigenvectors of small matrices and apply diagonalisation in order to solve simultaneous ordinary differential euqations.
- 5.Use a computer mathematics package to carry out the operations, as appropriate, in 1-4 above.

Indicative Module Content

The syllabus will include:

Further applications of a computer mathematics package for problems in engineering mathematics.

Solution of first and second order ordinary differential equations: separation of variables. Integrating factor method. Complementary function and particular integrals.

Directed Study Directed Study	30
<i>Private Study</i> Private Study	56

6

Mode of Delivery

The module is lecture, tutorial and computer lab based.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2,3,4
Component 2	5

Component 2 - Coursework

Component 1 - This is a closed book examination.

Indicative Bibliography

1.STROUD, K. A. and BOOTH, D. J, 2011. Advanced Engineering Mathematics. 5th ed. Palgrave.

2.STROUD, K.A. and BOOTH D.J., 2013. Engineering Mathematics. 7th ed. Palgrave.