This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module Laplace Transforms: Definition of Laplace transform and its inverse. Mathematics 1B (CM1902) or Use of tables to calculate Laplace equivalent. transforms of elementary function. The solution of ordinary differential **Corequisite Modules** equations. The step function and impulse function. None Fourier series: Decomposition of waveforms. Fourier series of simple **Precluded Modules** functions. None. **Aims of Module Indicative Student Workload** To provide the student with the

To provide the student with the ability to apply advanced level mathematics to engineering problems.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

Contact Hours	Full Time
Lectures	24
Tutorials	24
Computer Labs	10
Assessment	6
Directed Study Directed Study	30
<i>Private Study</i> Private Study	56

- techniques to problems in engineering.
- 2.Apply Laplace transform methods to problems involving simple linear systems.
- 3.Apply Fourier series techniques to periodic signals.
- 4.Use a computer mathematics package to carry out the operations, as appropriate in 1- 3 above.

Indicative Module Content

The syllabus will include:

Further applications of a computer mathematics package to problems in engineering mathematics.

Partial differentiation: Application to simple engineering problems.

Mode of Delivery

The course is lecture, tutorial and computer lab based.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2,3
Component 2	1,2,3,4

Component 2 - Coursework

Component 1 - Exam

Indicative Bibliography

1.STROUD, K.A., 2013. Engineering Mathematics. 7th Ed. Palgrave.