Module Title Problem Solving And Modelling In Computing	Reference CM1014 SCQF Level SCQF 7
	SCQF Points 30
Keywords	ECTS Points 15
Geometry, Sequences and Series, Statistics, Probability, Class, Object, Use Case, Sequence	Created March 2007
Diagram, Systems Analysis and Design	ApprovedJuly 2007
Diagram, Systems Anarysis and Design	Amended
	Version No. 1

This Version is No Longer Current

The latest version of this module is available <u>here</u>

Prerequisites for Module	Descriptive statistics. Measures of central tendency and dispersion.
None, in addition to course entry requirements.	Probability rules.
Corequisite Modules	Objects, classes, inheritance, messages, polymorphism, class
None.	hierarchy, structural view, user view, interaction view, CASE tool.
Precluded Modules	
	Indicative Student Workload
None.	

Contact Hours

Full Time

48

24

Aims of Module	Lectures
	Tutorials/Seminars
To provide students with the	Supervised Labs
uderstanding of problems which	Unsupervised labs
arise in computing situations and	Assessment
the practical skills for the	
efficient solution of these	Directed Study

To provide students with the uderstanding of problems which arise in computing situations and the practical skills for the	Supervised Labs Unsupervised labs Assessment	24 24 10
efficient solution of these problems.	Directed Study Directed Study	50
Learning Outcomes for Module	<i>Private Study</i> Private Study	120

On completion of this module, students are expected to be able to:

- 1.Recognise and solve, using appropriate mathematical techniques, a set of computational problems.
- 2.Apply basic statistical techniques and derive measures of probability for a given set of data.
- 3.Apply basic object-oriented systems analysis and design techniques to a given problem and to model its solution.
- 4. Specify the different views of a system using a CASE tool to support systems modelling and produce design deliverables.

Indicative Module Content

Coordinate geometry. Graph drawing, straight lines and other functions, parameterisation, distance metrics.

Sequences and series and relationship to loops.
Computational complexity.
Financial mathematics.

Sets. Functions. Boolean algebra.

Mode of Delivery

This module is delivered throughout the teaching session using a mixture of lectures, tutorials and computer laboratory sessions (where appropriate).

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2,3,4

Component 1 - Coursework

Indicative Bibliography

- 1.ROSEN, K., 2012. Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill.
- 2.BRITTON, C., and DOAKE, J., 2005. A Student Guide to Object Oriented Development. Elsevier.
- 3.SOMMERVILLE, I., 2011. Software Engineering. 9th ed. Pearson.