

This Version is No Longer Current

The latest version of this module is available here

MODULE DESCRIPTOR					
Module Title					
Drug Discovery and Design					
Reference	ASM044	Version	1		
Created	December 2018	SCQF Level	SCQF 11		
Approved	May 2019	SCQF Points	15		
Amended		ECTS Points	7.5		

Aims of Module

To enable students to critically understand and evaluate aspects of drug design and the drug discovery process.

Learning Outcomes for Module

On completion of this module, students are expected to be able to:

- 1 Critically evaluate and understand modern and historic approaches to drug discovery.
- 2 Critically discuss the chemical and physical properties of organic functional groups with respect to drug design and critically review the 'drug journey'.
- 3 Critically evaluate and analyse organo-synthetic and spectroscopic characterisation data.

Indicative Module Content

A history of drug discovery; medicinal chemistry; an overview of the drug discovery process; natural products as pharmaceutical lead compounds; SAR studies; bench to clinic case studies.

Module Delivery

The module will be delivered by lectures and tutorials, including visiting speakers. There will also be practical laboratory sessions.

Indicative Student Workload	Full Time	Part Time
Contact Hours	40	N/A
Non-Contact Hours	110	N/A
Placement/Work-Based Learning Experience [Notional] Hours		N/A
TOTAL	150	N/A
Actual Placement hours for professional, statutory or regulatory body		

Module Ref: ASM044 v1

ASSESSMENT PLAN

If a major/minor model is used and box is ticked, % weightings below are indicative only.

Component 1

Type: Coursework Weighting: 100% Outcomes Assessed: 1, 2

Description: A critical review of the drug discovery and design process.

Component 2

Type: Coursework Weighting: 0% Outcomes Assessed: 3

Description: Successful completion of a laboratory book, detailing and recording data from laboratory sessions.

This is a competency based assessment graded pass (P)or fail/unsuccessful (U).

MODULE PERFORMANCE DESCRIPTOR

Explanatory Text

To pass this module the student must achieve a grade D or better. The grading criteria are:

Module Grade	Minimum Requirements to achieve Module Grade:
Α	A mark of 70% or greater for C1 and a P in C2.
В	A mark of between 60-69% for C1 and a P in C2.
С	A mark of between 50-59% for C1 and a P in C2.
D	A mark of between 40-49% for C1 and a P in C2.
E	A mark of between 35-39% for C1 and a P in C2.
F	A mark of less than 35% for C1 and/or a U in C2.
NS	Non-submission of work by published deadline or non-attendance for examination

Module Requirements

Prerequisites for Module None, in addition to course entry requirements.

Corequisites for module None.

Precluded Modules None.

INDICATIVE BIBLIOGRAPHY

- 1 Patrick, G.L., (2017). 'An introduction to medicinal chemistry', 6th edition, Oxford University Press.
 - Afonso, C., Candeias, N., Simao, D., Trindade, A., Coelho, J., Tan, B. and Franzen, R. (2017).
- 2 'Comprehensive organic chemistry experiments for the laboratory classroom', Cambridge: Royal Society of Chemistry.