	Reference AS2041
Module Title Analytical Science 2	SCQF Level SCQF 8
	SCQF Points 15
	ECTS Points 7.5
Vormondo	Created May 2002
Keywords Electrochemical calls notantiametry V Days	Approved September 2004
Electrochemical cells, potentiometry, X-Rays,	Approved 2004
QA/QC Atomic Spectroscopy	Amended May 2011
	Version No. 4

This Version is No Longer Current

The latest version of this module is available here

Prerequisites for Module

Analytical Techniques for Life Sciences (AS1802) or equivalent.

Corequisite Modules

None.

Precluded Modules

None.

Aims of Module

To provide students with the ability to explain the principles and evaluate the applications of a given range of techniques relevant to Analytical and Forensic Science.

Learning Outcomes for Module

Quality: the role and practice of QA/QC including QA manual, standards, control charts, auditing and laboratory accreditation.

Basic instrumentation, techniques and applications of flame atomic absorption & emission spectroscopy.

Indicative Student Workload

	Full	Distance
Contact Hours	Time	Learning
Lectures	28	0
Tutorials/Case Studies	7	0
Directed Study Directed Study	50	0
Private Study Private Study	65	150

Mode of Delivery

This is a lecture-based course supplemented with tutorial sessions and case studies.

on completion of this module, students are expected to be able to:

- 1.Discuss the basic principles, instrumentation, advantages and limitations of a range of electrochemical, X-ray and atomic spectroscopy techniques.
- 2.Explain the implementation and advantages of QA/QC and laboratory accreditation schemes in the analytical laboratory.

Indicative Module Content

Basic electrochemistry: standard potential, IUPAC convention of cell representation, determination of cell potential, galvanic and electrolytic cells, liquid junction potentials. Potentiometry: reference and ion selective electrodes, direct potentiometry, titrations. Coulometry & conductivity: cell construction, Faraday's Laws, electrogravimetry, titrations. Voltammetry: polarography, LSV, DPV X-rays: X-ray production, wavelength and energy dispersive X-ray fluorescence spectrometry, Bragg's law.

The module will be delivered to distance learning students via the University's Virtual Learning Environment.

Assessment Plan

	Learning Outcomes Assessed
Component 1	1,2
Component 2	1

Component 2: Class Test

Component 1 :Closed book examination.

Indicative Bibliography

- 1.SKOOG, D.A., HOLLER, F.J. AND CROUCH, S.R. *Principles of Instrumental Analysis*. Current Edition. Thomson Brooks/Cole.
- 2.PRICHARD, F.E. *Quality Assurance in Analytical Chemistry*. Current Edition. Chemistry
 Laboratory. Wiley.
- 3.MONK, P.M. Fundamentals of Electroanalytical Chemistry.

 Current Edition. Wiley